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1 Introduction
Although most people never realize it, they come into contact with rewriting at an early age.
At primary school, we learn about the natural numbers, along with the basic arithmetic op-
erations, and we learn to simplify arithmetic expressions. For instance, Fig. 1 shows the steps
of simplifying 5 ⋅ (3 + 1) to 20.

5 ⋅ (3 + 1) = 5 ⋅ 4
= 20

Figure 1: Simplifying the arithmetic expression 5 ⋅ (3 + 1).

Arithmetic simplification is an example of a rewriting system. The field of rewriting is con-
cerned with all systems that are characterized by a step-by-step application of rules which
transform an object into another. Rewriting appears in many forms, but it is most well-
known in the form of term rewriting, which was largely developed in the 1930s as the basis
for the lambda calculus, and still forms the basis for modern functional programming lan-
guages. In this thesis, we will look at abstract rewriting, the subfield of rewriting that looks at
rewriting systems in their most general form, as a collection of binary rewrite relations on a
set of opaque objects.

5 ⋅ 3 + 5 ⋅ 1
5 ⋅ 4

5 ⋅ (3 + 1)

15 + 5

20

Figure 2: When simplifying arithmetic expressions, any diverging steps will converge again;
the rewriting system we use to simplify arithmetic expressions is confluent.

Despite knowing nothing about our objects, we can still define various important prop-
erties of our rewrite relation. For instance, consider the rewriting steps shown in Fig. 2. Al-
though we take diverging steps from our initial expression 5 ⋅ (3 + 1) to the intermediate
expressions 5 ⋅ 3 + 5 ⋅ 1 and 5 ⋅ 4, these intermediate expressions eventually converge again in
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our final simplified expression 20. This property that diverging steps always converge again
is called confluence. Additionally, we can always simplify an arithmetic expression in a finite
number of steps, and end upwith a normal form, an expression that cannot be simplified any
further. This property is called weak normalization, and if we pick the rewrite rules carefully,
we can even guarantee strong normalization (also called termination) – the property that we
cannot go on simplifying an expression forever.

Confluence and termination are generally desirable properties to have, since they guaran-
tee that applying the rules in our rewriting system will always produce a final result, which is
the same regardless of the order in which we apply the rewrite rules.

Unfortunately, both confluence and termination are undecidable – that is, there is no
universal procedure for determining whether an arbitrary rewriting system is confluent or
terminating. In fact, it is often difficult to directly prove that a rewriting system is conflu-
ent. Instead, we often show that it satisfies various simpler properties, which together imply
confluence. Over the years, many of these so-called confluence criteria have been developed:
the Hindley-Rosen lemma [4, 11], Rosen’s requests lemma [11], Newman’s Lemma [7], et
cetera.

One reason for this wealth of confluence criteria is that they are generally incomplete. That
is, if a system does not satisfy a confluence criterion, it does not necessarily mean that it is not
confluent; there might be other confluence criteria that it does satisfy. That said, there are
some results that show that confluence criteria are complete on a specific class of rewriting
systems.

In this thesis, we are concerned with formalizing much of the basic theory of abstract
rewriting, culminating in a proof that one specific confluence criterion, 2-label decreasing
diagrams (DCR2), is complete for the class of countable rewriting systems.

1.1 Contributions
Our main contribution is a formalization of Endrullis, Klop, and Overbeek’s proof of the
completeness of DCR2 for countable systems. As part of this process, we have formalized
many of the foundational notions and results in abstract rewriting. This includes basic prop-
erties on rewrite relations (confluence, normalization, …), as well as various lemmas interre-
lating these properties, chief among them three proofs of Newman’s Lemma. Figure 3 gives
an overview of these proofs, inspired by a similar figure in [13, p. 19].

Our formalization is available as a Lean project in the Git repository at https://github.
com/svkampen/msc-thesis/.

1.2 Outline
This thesis is structured as follows. In section 2, we give an introduction to our theorem
prover of choice, Lean. In section 3, we review the foundational notions of abstract rewrit-
ing (rewrite relations, abstract rewriting systems, and their basic properties), and see how
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CR
≤1

CR

UN ∧ WN

NF

SN  ∧ WCR

Ind ∧ Inc

countable
CP

DCR DCR2

WCR ∧ WN ∧ Inc

Figure 3: An overview of the interrelations between ARS properties that we have formalized.
Note that there are implications which are true, but not shown in this figure (such
as DCR ⇒ CR), because they are not formalized in this work. Arrows pointing
from or to a conjunction symbol refer to the entire conjunction; pointing from or
to a conjunct refer only to that conjunct.

they can be formalized in Lean. In section 4, we discuss three proofs of Newman’s Lemma,
contrasting them with respect to elegance and ease of formalization. In section 5, we start
building up to our main result, discussing the important property of cofinality and related
theorems. We culminate in section 6 by formalizing the completeness proofs of DCR and
DCR2.

1.3 On formalization
With this thesis, we are making a small contribution to the collection of formalized mathe-
matics. We think this is worthwhile for multiple reasons.

• Formalization provides strong evidence. Although all forms of proof have pitfalls,
formal proof included, a formal proof is relatively strong evidence that a result holds,
since it makes explicit many implicit assumptions and steps in an informal proof and
requires us to justify every minor proof step, relying only on a small collection of ax-
ioms. This is the traditional selling point of formalization.
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• Formalization cements understanding. Because formalization makes explicit every
implicit assumption and proof step in an informal proof, it makes the formalizer con-
tend with the gaps or misunderstandings in their own knowledge of the subject. On
multiple occasions, while in the middle of writing a Lean proof, I have realized that
my own understanding of a proof step or definition was incomplete or subtly wrong,
and my understanding of the subject has gotten better for it.

• Formalization is fun. Formalization using an interactive theorem prover has been
compared to a video game multiple times. By turning the solo activity of writing a
proof into an interactive activity where you ‘play’ against a computer which tries to re-
fute your arguments, theorem proving becomesmore like a puzzle game, and although
it can sometimes be extremely frustrating, it is mostly a lot of fun.

Our theorem prover of choice in this work is Lean. One might wonder: why Lean? A
number of results in abstract rewriting have already been formalized in Isabelle/HOL, so that
seems like a natural choice here, as well. And more generally, there is a wealth of proof assis-
tants to choose from these days. In large part this is simply personal preference: I was taught
Lean as a student and am therefore well-versed in it. Additionally, because very little rewrit-
ing has been formalized in Lean, we have the opportunity to build up the theory of abstract
rewriting from the ground up.

1.4 Related work
Abstract rewriting is generally treated as a precursor to more concrete areas of rewriting, in
particular term rewriting, and as such, the literature on abstract rewriting is often found as
introductory chapters in books on term rewriting. The aptly namedTermRewriting Systems
[13], which treats abstract rewriting in chapters 1 and 14, is the basis for much of this thesis.

A number of results in abstract rewriting have been previously formalized by Thiemann
and Sternagel in Isabelle/HOL as part of the IsaFoR/CeTA project [12, 14]. Their Isabelle
theory has also been used in various other results, among themHarald Zankl’s formalization
of Confluence by Decreasing Diagrams [16]. The inductive and functional definitions of
rewrite sequences, in particular, are inspired by their work.

1.5 Terminology
In many rewriting systems, transforming an object by means of a rewrite rule in some way
‘reduces’ the object – for instance, in Fig. 2, our initial complex expression 5 ⋅ (3 + 1) is
reduced to the normal form 20. For this reason, the term ‘rewrite’ is often replaced by the
term ‘reduction’, e.g. abstract reduction system, reduction relation, reduction sequence. We use
the terms interchangeably.
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2 Lean
Lean is an interactive theorem prover based on dependent type theory – specifically, the
Calculus of Inductive Constructions (CIC). CIC is also used in other theorem provers, chief
among them Coq, from which it originates. Dependent type theory has a computational
interpretation, and as such, Lean can be used as a functional programming language. For in-
stance, consider Example 2.1, which defines the datatype Nat of natural numbers, as well as
an addition function on Nat:

Example 2.1 (Addition on the natural numbers in Haskell).

data Nat where
Zero ㌚㍦ Nat
Succ ㌚㍦ Nat -> Nat

add ㌚㍦ Nat -> Nat -> Nat
add Zero b = b
add (Succ a) b = Succ (add a b)

The equivalent Lean code looks fairly similar, using an inductive type for Nat and similarly
performing pattern matching in add (Example 2.2).

Example 2.2 (Addition on the natural numbers in Lean).

inductive Nat where
| zero: Nat
| succ: Nat → Nat

def add: Nat → Nat → Nat
| Nat.zero, b 㟘㢾 b
| (Nat.succ a), b 㟘㢾 Nat.succ (add a b)

Whereas previous versions of Leanwere intended to be theorem provers first, with the abil-
ity to encode and evaluate programs second, the version we are using, Lean 4, forms an inte-
grated functional programming language and theorem prover, similar in some sense to Agda.
As such, Lean has all the features you would expect from a modern functional programming
language.

What makes Lean special is its support for proving properties of our definitions. Along-
side its computational interpretation, dependent type theory also has a logical interpretation.
Namely, we can state propositions as types, and give proofs as inhabitants of that type. Take,
for example, logical implication. The statement 𝑝 ⇒ 𝑞 in propositional logic can be seen as
the function type p → q: if we have a function of type p → q, and we provide an element
of type p, we can get an element of type q, just as, by modus ponens, a proof of 𝑝 ⇒ 𝑞 and a
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proof of 𝑝 yield a proof of 𝑞. Therefore, if we can define a function p → q, we have a proof
of 𝑝 ⇒ 𝑞.

Of course, implication is only one of the standard logical connectives. Lean’s type theory
also allows us to encode the rest of the logical primitives of higher-order logic. For instance,
conjunction and disjunction (And and Or):

Definition 2.3 (Conjunction and disjunction in Lean).

inductive And: Prop → Prop → Prop where
| intro: (a b: Prop) → a → b → And a b

inductive Or: Prop → Prop → Prop where
| inl: (a b: Prop) → a → Or a b
| inr: (a b: Prop) → b → Or a b

We define the inductive types And and Or. Both type constructors And and Or take two propo-
sitions and return a proposition; this is represented in their type signature Prop → Prop →
Prop. And has a single introduction rule intro, which takes two propositions a, b as well as
proofs of a and b, and returns a proof of And a b, more commonly written a ∧ b. Or instead
has two introduction rules, inl and inr, corresponding to a proof via the left disjunct and a
proof via the right disjunct.

The perceptive reader may notice some unfamiliar syntax in the introduction rules for And
and Or. Instead of a regular function type, which takes the form σ → τ, we are greeted by the
dependent function type (x: σ) → τ[x], where x has the type σ, and may appear in τ. This
allows τ to depend on x – hence the name dependent type theory.

Although the syntax above shows the underlying dependent function types well, we gen-
erally use slightly different syntax, which moves the common parameters to the header. Ad-
ditionally, since And is a single-constructor type, we use the structure keyword, which allows
us to refer to the left and right conjunct using the And.left and And.right functions (also
written h.left and h.right if h: a ∧ b). The following definitions come straight from the
Lean standard library :

Definition 2.4 (Conjunction and disjunction in Lean 2).

structure And (a b : Prop) : Prop where
/-- `And.intro : a → b → a ∧ b` is the constructor for the And operation. -/
intro ㌐㍘
/-- Extract the left conjunct from a conjunction. `h : a ∧ b` then

`h.left`, also notated as `h.1`, is a proof of `a`. -/
left : a
/-- Extract the right conjunct from a conjunction. `h : a ∧ b` then

`h.right`, also notated as `h.2`, is a proof of `b`. -/
right : b
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inductive Or (a b : Prop) : Prop where
/-- `Or.inl` is "left injection" into an `Or`.

If `h : a` then `Or.inl h : a ∨ b`. -/
| inl (h : a) : Or a b
/-- `Or.inr` is "right injection" into an `Or`.

If `h : b` then `Or.inr h : a ∨ b`. -/
| inr (h : b) : Or a b

Similar definitions exist for ⊤ (True), ⊥ (False), ∃ (∃, Exists), ⇔ (↔, Iff), and = (=, Eq).
¬𝑎 (¬, Not) is defined as a → False, and ∀ is simply alternative notation for the dependent
function type: (∀x: σ, τ[x]) is definitionally equal to ((x : σ) → τ[x]). This completes
our complement of standard logical symbols.

Although proofs can be written in the same functional language as definitions and pro-
grams, most Lean proofs make use of the built-in tactic language. A similar system exists in
Coq (Ltac), and there are loosely related concepts in Isabelle/HOL and Agda, although they
work significantly differently. As an example, let’s prove the simple statement that adding
zero to a natural number yields the number unchanged:

Example 2.5 (A proof of ∀𝑛, 𝑛 + 0 = 𝑛).

theorem add_zero: ∀a: Nat, add a 0 = a む= by
intro a -- We introduce a, moving it into the context.
induction a -- We perform induction on a.

/- The base case is trivial, by reduction of `add 0 0` to `0`. -/
case zero 㟘㢾
trivial

/- In the inductive step, we have `n: Nat, ih: add n 0 = n`,
and we must show `add (n + 1) 0 = n + 1`. -/

case succ n ih 㟘㢾
rw [add] -- `add (n + 1) 0` = `(add n 0) + 1` (by `add`)
rw [ih] -- `(add n 0) + 1` = `n + 1` (by `ih`). QED.

Using the tactic language, the proof is written in a way that somewhat resembles pen-and-
paper mathematics. Aside from basic operations (introduction, induction, cases, rewriting,
...), tactics are also the main way to access proof automation in Lean. For instance, there
are tactics which automatically resolve integer and natural linear arithmetic problems (omega),
simplify the goal or hypotheses in various ways (simp), et cetera.

Formalizing mathematics in Lean, then, is a question of defining types and functions, for-
mulating propositions, and writing proofs. To help us get started, Lean ships with a number

11

https://segfault.party/thesis-docs/find/?pattern=True#doc
https://segfault.party/thesis-docs/find/?pattern=False#doc
https://segfault.party/thesis-docs/find/?pattern=Exists#doc
https://segfault.party/thesis-docs/find/?pattern=Iff#doc
https://segfault.party/thesis-docs/find/?pattern=Eq#doc
https://segfault.party/thesis-docs/find/?pattern=Not#doc
https://segfault.party/thesis-docs/find/?pattern=Lean.Parser.Tactic.omega#doc
https://segfault.party/thesis-docs/find/?pattern=Lean.Parser.Tactic.simp#doc


of built-in types, functions, and lemmas, which we can use in our formalization: the Lean
standard library. Aside from the standard library, most of the mathematics that has been
formalized in Lean lives inmathlib, the community-maintained mathematical library.

2.1 Set-theoretic definitions in Lean
Much of traditional mathematics is written in the language of set theory, and this is also the
case with abstract rewriting. Since Lean is not based on set theory, but on type theory, we will
often have to make some adjustments to set-theoretic definitions in order to represent them
in Lean. To illustrate the differences, consider the following objects:

• ℕ, the natural numbers,
• {1, 2, 3}, a set of natural numbers,
• 1, a natural number.

In set theory, all three of these are sets, just like every other object in set theory. In this way,
set theory is essentially untyped. This means we can state things likeℕ = {𝑛 ∣ 𝑛 ∈ ℕ}, or
even 1 ∈ 2, without violating the rules of set theory.

In Lean’s type theory, these three objects also exist, but they are distinctly different kinds
of objects. The natural numbers are a type, with individual natural numbers (like 1) being
inhabitants of the type. The only object of the above that we would also call a set in type
theory is our set of natural numbers {1, 2, 3} – in Lean, this object would have the type Set
ℕ. As you can see, a set in Lean is always a set of elements of some type – in this case, natural
numbers. In some sense, the natural numbers are a ‘base set’ which would be represented as
a type in Lean, and any subsets of a base set are what we call Sets in Lean.

Because these three kinds of objects have different types, many ‘nonsensical’ statements
become invalid. For instance, ∈ is only defined if the right-hand side is a Setwith elements of
the same type as the left-hand side, so the expression 1 ∈ 2 is not well-typed. Additionally,
trivial equalities in set theory likeℕ = {𝑛 ∣ 𝑛 ∈ ℕ} are not well-typed in Lean, because the
natural numbers are distinct from the set containing all natural numbers.

Aside from sets, Lean has the concept of subtypes (Subtype). Subtypes are essentially sets
with the membership predicate lifted into the type system. That is, the set s む= { m: ℕ | m
< 10 } contains elements n: ℕ which satisfy n < 10, and the subtype { m ㌦㍮ m < 10 } has
inhabitants n : { m ㌦㍮ m < 10 }, which consist of a value n.val : ℕ and a proof n.prop:
n.val < 10.

Choosing between sets and subtypes is a trade-off: do you always want to carry the mem-
bership proof with the element? For instance, if you find yourself writing a lot of proofs that
take an element of some type along with a proof that the element is a member of a set, it
might be more convenient to use subtypes. Additionally, because subtypes are types, they
can be used wherever a type is expected. Both subtypes and sets occur in various definitions
in this thesis, and it is fairly easy to convert between the two.
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2.2 Parameter notation
There are various ways of writing the parameters in function definitions in Lean. For in-
stance, our addition function on natural numbers from Example 2.2 can also be written as
follows:

Example 2.6 (Addition on natural numbers, revisited).

def add (a b: ℕ): ℕ む=
match a, b with
| Nat.zero, b' 㟘㢾 b'
| (Nat.succ a'), b' 㟘㢾 Nat.succ (add a' b')

Here, we name the parameters in the function header, and we mark the type of add a b as
ℕ. Note that we then immediately perform a pattern match, so this notation is not so useful.
It often can be useful, though; for instance, when we want to pass in implicit parameters.

Often, lemmas and definitions are given parameters that can be inferred from the explicit
parameters – these implicit parameters are surrounded by curly braces instead of parentheses.
When using such a declaration, the user does not need to supply the implicit parameters. For
example:

Example 2.7 (Implicit and explicit parameters).

def is_symmetric {α: Type} (r: Rel α α) む=
∀(a b: α), r a b → r b a

def is_reflexive {α: Type} (r: Rel α α) む=
∀(a: α), r a a

def example_rel {α: Type}: Rel α α
| a, b 㟘㢾 True

lemma example_rel_rfl {α: Type}:
is_reflexive example_rel む= ㋽㍉㎕

The declarations in Example 2.7 all take a type argument α, but α can be inferred from
the relation that we pass in. Therefore, we can mark α as implicit. Additionally, it can often
be nice to not have to repeat these arguments time and time again. Instead, we can use a
variable declaration to declare them upfront. Lean will recognize that we are referring to the
previously declared variables, and automatically insert arguments in our definition for us.
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Example 2.8 (Variable declarations).

variable {α} (r: Rel α α)

def is_symmetric む=
∀(a b: α), r a b → r b a

def is_reflexive む=
∀(a: α), r a a

def example_rel: Rel α α
| a, b 㟘㢾 True

lemma example_rel_rfl:
is_reflexive example_rel む= ㋽㍉㎕

#check is_symmetric -- is_symmetric has type {α: Type} → (r: Rel α) → Prop

The variable declaration declares an implicit parameter α: Type and an explicit parameter
r: Rel α α. Note that we have not even said that α should be a Type; Lean can also infer that
from the context.

2.3 Lean conventions
The rest of this thesis contains numerous snippets of Lean code. The following variables may
be assumed to exist in any Lean code snippet included from chapter 3 onwards:

variable {α β I J: Type} (r s: Rel α α) (A: ARS α I)

That is, we introduce four types α, β, I, J; two relations r, s, and an ARS A. What these
are will become clear in the coming chapters.

Note that we use the standard Lean convention of denoting arbitrary type variables by a
Greek letter (α, β, γ, ㋵㌽㎅). This occasionally clashes with the use of Greek letters for indices
in the literature. We instead use the letters 𝑖, 𝑗, 𝑘, … for these indices.

When describing definitions and lemmas for the first time, we will often link to their page
in the library documentation. These links are printed in Monospaced Green, e.g. Set.
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3 Abstract Rewriting
Asmentioned, unlike Isabelle/HOL, Lean does not yet contain any results in abstract rewrit-
ing. Therefore, we must build the theory of abstract rewriting from the ground up, starting
with the foundational definitions and properties: reduction relations, abstract reduction sys-
tems, reduction sequences, confluence, and normalization.

3.1 Notation
The basic notation of abstract reduction systems and reduction relations is taken from [13,
pp. 7–10]. We deviate from their notation occasionally, most notably when representing
equivalence and equality. The notational conventions are included here for convenience.

Let 𝛢 be a set. For a binary relation 𝑟 ⊆ 𝛢 × 𝛢 we write 𝑟= for its reflexive closure, 𝑟+
for its transitive closure, 𝑟∗ for its reflexive-transitive closure, 𝑟−1 for its inverse, and 𝑟≡ for its
equivalence closure.

When the binary relation is represented as an arrow→, we may additionally write↠ for
its reflexive-transitive closure,← for its inverse,↔ for its symmetric closure and↔∗ for its
equivalence closure. If (𝑎, 𝑏) ∈ →, we generally write 𝑎 → 𝑏.

If the relation in question is obvious, we might refer to two elements 𝑎, 𝑏 being related by
the equivalence closure simply as 𝑎 ≡ 𝑏. The notation 𝑎 = 𝑏 is reserved for true equality.

We will generally use 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, 𝑥, 𝑦, 𝑧 to denote elements of some set𝛢, 𝛣, …; 𝑟, 𝑠, 𝑡
to denote binary relations; 𝑖, 𝑗, 𝑘 to denote indices; 𝑚, 𝑛 to denote natural numbers; and
𝒜,ℬ, … to denote abstract reduction systems.

3.2 Abstract reduction systems
In order to model the rewriting processes we have described in the introduction mathemat-
ically, we represent a rewrite rule as a binary relation 𝑅 ⊆ 𝛢 × 𝛢 over our set of objects 𝛢,
which contains a pair (𝑎, 𝑏) if and only if 𝑎 can be rewritten to 𝑏 according to the rewrite rule.
We call such a relation a rewrite (or reduction) relation.

Just as we may have many rewrite rules, we may have many reduction relations in one re-
duction system. These multiple reduction relations are generally modeled as a family of re-
duction relations, indexed by some set 𝛪.

Definition 3.1 (Reduction, [13, p. 8]). Let𝛢 be a set of objects, 𝛪 a set of indices, and
{→𝑖 ∣ 𝑖 ∈ 𝛪} a family of reduction relations over𝛢. If (𝑎, 𝑏) ∈ →𝑖, we write 𝑎 →𝑖 𝑏.

(i) If 𝑎 →𝑖 𝑏, we call 𝑏 a one-step (𝑖-)reduct of 𝑎, and 𝑎 a one-step (𝑖-)expansion of 𝑏.
(ii) A reduction sequence with respect to→𝑖 is a sequence 𝑎0 →𝑖 𝑎1 →𝑖 ⋯, consisting of

zero or more reduction steps 𝑎𝑗 →𝑖 𝑎𝑗+1. The sequence may be finite or infinite; if it is
finite, it will have some final element 𝑏, which is called an (𝑖-)reduct of 𝑎. We may also
say 𝑎 reduces to 𝑏.
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(iii) The length of a finite reduction sequence is the number of reduction steps that it con-
sists of.

Traditionally, the object set𝛢 and family of reduction relations 𝛪 that make up a reduction
system are bundled into a structure, which is called an abstract reduction system.

Definition 3.2 (Abstract reduction systems).

(i) An abstract reduction system (ARS) is a structure𝒜 = (𝛢, {→𝑖 | 𝑖 ∈ 𝛪 }) consisting
of a set𝛢 and a family of reduction relations→𝑖 ⊆ 𝛢 × 𝛢 indexed by some set 𝛪.

(ii) The union of reduction relations in an ARS is written→𝛪 = ⋃𝑖∈𝛪 →𝑖, or simply→.
(iii) Two indexed ARSs 𝒜 = (𝛢, {→𝑖 | 𝑖 ∈ 𝛪 }) and ℬ = (𝛢, {→𝑗 | 𝑗 ∈ 𝐽 }) are

reduction-equivalent if they have the same union of reduction relations, i.e. →𝛪 = →𝐽.

Sources often distinguish between an indexed and non-indexedARS, where a non-indexed
ARS has only a single reduction relation. Since a non-indexed ARS is equivalent to an in-
dexed ARS with a single index, we do not distinguish between the two.

Asmentioned in Section 2.1, we will need tomake some adjustments to these set-theoretic
definitions to produce our Lean definitions. Instead of sets of objects and indices, our ARS
structure takes a type α of objects and a type I of indices. To represent a rewrite relation, we
could faithfully translate our set-theoretic definition→𝑖 ⊆ 𝛢 × 𝛢 as follows:

Definition 3.3 (A faithful translation of Definition 3.2 to Lean).

structure ARS (α I: Type) where
rel: I → Set (α × α)

In this definition, our family of rewrite relations is represented as a function, which takes
an index and returns a rewrite relation, which is a subset of α × α. Although this is a faithful
definition, it is not the way binary relations are generally represented in Lean, which is as a
binary function α → α → Prop, also written Rel α α.

Let’s consider howwe can get from Set (α × α) to α → α → Prop. In Lean, a set is defined
in terms of its membership predicate – in fact, the Lean type Set β is definitionally equal to
β → Prop, the type of membership predicates1. That means the type of our rewrite relation
can also be written (α × α) → Prop. Lastly, a function that takes a pair of elements can be
curried, and written instead as α → α → Prop.

This is the standard form of a relation in Lean; using it in the form Rel α α allows us to,
for instance, take the inverse of a relation r using r.inv, as well as use themathlib definitions
for the reflexive, transitive, reflexive-transitive and equivalence closure of a relation: ReflGen,
TransGen, ReflTransGen and EqvGen. For example:

1Why does a membership predicate m have the type β → Prop? Because, for any element b: β, m b is the
proposition which holds iff b is in the set.
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Example 3.4 (Working with the reflexive-transitive closure of a relation).

/-- `is_succ a b` holds if `b` is the successor of `a`. -/
def is_succ: Rel ℕ ℕ

| a, b 㟘㢾 a + 1 = b

/-- The reflexive-transitive closure of `is_succ` is equivalent to `≤` -/
lemma rtc_is_succ_iff_le (a b: ℕ): ReflTransGen is_succ a b ↔ a ≤ b む=

/- proof omitted -/

In our final definition of ARS, we therefore use Rel α α instead of Set (α × α):

Definition 3.5 (Our final definition of ARS).

structure ARS (α I: Type) where
rel: I → Rel α α

As is the case for our set-theoretic definition, we do not have a separate definition for a
non-indexed ARS; using Definition 3.5, we can still represent a non-indexed ARS by using
the single-inhabitant Unit type as our index type.

Aside from the main definition, we define some notation for common closures over rela-
tions, as well as a few derived relations: the union of rewrite relations and the convertibility
relation of an ARS:

Definition 3.6 (Closure notation and derived relations).

(i) We define r⁼ to be the reflexive closure, r⁺ the transitive closure, r∗ the reflexive-transitive
closure, and r≡ the equivalence closure over a relation r.

postfix:max (priority む= high) "⁼" 㟆㢬 ReflGen
postfix:max (priority む= high) "⁺" 㟆㢬 TransGen
postfix:max (priority む= high) "∗" 㟆㢬 ReflTransGen
postfix:max (priority む= high) "≡" 㟆㢬 EqvGen

(ii) Two elements 𝑎 and 𝑏 are in the union of rewrite relations of an ARS if there exists
some index 𝑖 such that 𝑎 →𝑖 𝑏.
abbrev ARS.union_rel (A: ARS α I): Rel α α む=
| a, b 㟆㢬 ∃i, A.rel i a b

(iii) The convertibility relation for an ARS is the equivalence closure of the union of its
rewrite relations.
abbrev ARS.conv (A: ARS α I): Rel α α む=

A.union_rel≡
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3.2.1 Reduction sequences

Now that we knowhow to represent reduction relations, we can continuewithDefinition 3.1
and consider how to represent reduction sequences.

The natural representation of reduction sequences in Lean is not immediately obvious.
On one hand, finite reduction sequences are very similar to finite lists, which are represented
inductively in Lean, so a natural representation might use inductive types. For instance, [16]
uses a definition similar to the following (translated from Isabelle):

Definition 3.7 (Inductive reduction sequence). The inductive definition of a reduction
sequence consists of the following introduction rules:

• There is an empty reduction sequence from any 𝑥 to itself.
• If 𝑥 → 𝑦 is a reduction step, and there is a reduction sequence from 𝑦 to 𝑧, there is a
reduction sequence from 𝑥 to 𝑧.

inductive ReductionSeq: α → α → List (α × α) → Prop
| refl {x} : ReductionSeq x x []
| head {x y z ss} : r x y → ReductionSeq y z ss → ReductionSeq x z ((x, y)㌐㍘ss)

A value of type ReductionSeq r x y ss represents a reduction sequence with respect to r
from x to ywith intermediate steps as given in ss. Such a value can be constructed by starting
with the empty reduction sequence from y to y, ReductionSeq.refl, and prepending steps
using ReductionSeq.head. For instance, given the individual steps 𝑎 → 𝑏, 𝑏 → 𝑐, 𝑐 → 𝑑 we
could construct the reduction sequence 𝑎 → 𝑏 → 𝑐 → 𝑑 as follows:

Example 3.8 (A reduction sequence from 𝑎 → 𝑏 → 𝑐 → 𝑑).
open ReductionSeq -- so head, refl are in scope

example {a b c d} (s₁: r a b) (s₂: r b c) (s₃: r c d):
ReductionSeq r a d [(a,b),(b,c),(c,d)] む=

head s₁ (head s₂ (head s₃ refl))

An alternative definition appears when we consider the case of an infinite reduction se-
quence. We cannot use an inductive type to represent an infinite sequence, so instead, we
turn to functions. An infinite sequence can be represented as a function from the natural
numbers to the elements of the sequence, and if we add a requirement that these elements
are linked by reduction steps, we have a definition of an infinite reduction sequence. In Lean,
we can express this property as follows:

Definition 3.9 (Infinite reduction sequence).

def inf_reduction_seq (f: ℕ → α) む=
∀n: ℕ, r (f n) (f (n + 1))
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We can adapt this definition to include finite reduction sequences by adding a bound N.

Definition 3.10 (Generic (finite or infinite) reduction sequence).

def reduction_seq (N: ℕ∞) (f: ℕ → α) む=
∀n: ℕ, n < N → r (f n) (f (n + 1))

For this bound, we use the extended natural type (ℕ∞), which extends the natural num-
bers with a greatest element ⊤. This way, a function 𝑓 that satisfies reduction_seq ⊤ f repre-
sents an infinite reduction sequence, while a function 𝑔 that satisfies, say, reduction_seq 42
g, represents a finite reduction sequence of length 42.

Our inductive definition has some advantages. For one, many proofs about finite reduc-
tion sequences proceed naturally using structural induction; for instance, the property that
two reduction sequences can be concatenated to form a larger reduction sequence can be
proved in only a few lines of trivial Lean:

Example 3.11 (Concatenating two sequences, inductive).

lemma concat {x y z} {ss ss'}
(h₁ : ReductionSeq r x y ss) (h₂: ReductionSeq r y z ss'):
ReductionSeq r x z (ss ++ ss') む= by

induction h₁ with
| refl 㟘㢾 exact h₂
| head hstep _ ih 㟘㢾 apply head hstep (ih h₂)

The same property using reduction_seq is more difficult to both state and prove:

Example 3.12 (Concatenating two sequences, functional).

def fun_aux (N: ℕ) (f g: ℕ → α): ℕ → α む=
fun n ↦ if (n ≤ N) then f n else g (n - N)

def reduction_seq.concat {N₁ N₂: ℕ} {f g: ℕ → α}
(hseq: reduction_seq r N₁ f) (hseq': reduction_seq r N₂ g)
(hend: f N₁ = g 0):
reduction_seq r (N₁ + N₂) (fun_aux N₁ f g) む= by

intro n hn
simp [fun_aux]
norm_cast at *
split_ifs
· -- case within hseq
apply hseq n (by norm_cast)

· -- case straddling hseq and hseq'
have: n = N₁ む= by omega
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aesop
· -- invalid straddling case (n > N₁, n + 1 ≤ N₁)
omega

· -- case within hseq'
convert hseq' (n - N₁) (by norm_cast; omega) using 2
omega

In many cases, however, we will have to deal with arbitrary reduction sequences, without
knowingwhether they are finite or infinite – for instance, the cofinality property, which plays
a key part in our main result, guarantees the existence of cofinal reduction sequences, which
can be finite or infinite. When defining and using such properties, it is convenient to have
a unified definition of finite and infinite reduction sequences. Luckily, the fact that these
definitions are equivalent in the finite case is easy to prove, so we can pick a representation at
will and convert it if necessary.

There are some additional Lean definitions related to reduction sequences that will come
up again later. They are defined as follows:

Definition 3.13 (Miscellaneous reduction sequence definitions).

variable {N: ℕ∞} {f: ℕ → α}
(i) The start of a reduction sequence 𝑓 is its first element, 𝑓(0).

def reduction_seq.start (hseq: reduction_seq r N f) む= f 0
(ii) The end of a reduction sequence 𝑓 of length𝛮 is its last element, 𝑓(𝛮).

def reduction_seq.end (N: ℕ) (hseq: reduction_seq r N f) む= f N
(iii) The elements in a reduction sequence𝑓 is the image of the numbers smaller than𝛮+1

under 𝑓.
def reduction_seq.elems (hseq: reduction_seq r N f): Set α む=

f '' {x | x < N + 1} -- `f '' A` is the image of A under f
(iv) A reduction sequence contains two elements 𝑎, 𝑏 if 𝑎 = 𝑓(𝑛) and 𝑏 = 𝑓(𝑛 + 1) for

some 𝑛 < 𝛮.

def reduction_seq.contains {r: Rel α α} {N f} (hseq: reduction_seq r N f) (a b: α) む=
∃n, f n = a ∧ f (n + 1) = b ∧ n < N

(v) If a reduction sequence contains two elements 𝑎, 𝑏, there is a step 𝑎 → 𝑏.
lemma reduction_seq.contains_step {r N f a b}

(hseq: reduction_seq r N f) (hab: hseq.contains a b):
r a b む= ㋵㌽㎅

Note that the definition of reduction_seq.end requires N to be a natural number, i.e. the
sequence to be finite.
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3.2.2 Sub-ARSs

Occasionally, we might want to look at only part of an ARS. For instance, we might want to
look at the ARS containing all elements that are reachable from some starting element a (the
reduction graph of a), or at the ARS containing all elements that are convertible to an element
a (the component of a). These partial ARSs are represented by the notion of a sub-ARS.

Definition 3.14 (sub-ARS, [13, p. 9], modified). Let𝒜 = (𝛢,⇝𝑖∈𝛪) andℬ = (𝛣,→𝑖∈𝛪)
be two ARSs. Then𝒜 is a sub-ARS of ℬ, denoted𝒜 ⊆ ℬ, if the following conditions are
satisfied:

(i) 𝛢 ⊆ 𝛣;
(ii) For all 𝑖 ∈ 𝛪,⇝𝑖 is the restriction of→𝑖 to𝛢, i.e.⇝𝑖 = →𝑖 ∩ 𝛢2;
(iii) For all 𝑖 ∈ 𝛪,𝛢 is closed under→𝑖, i.e. ∀𝑎 ∈ 𝛢, 𝑏 ∈ 𝛣, (𝑎 →𝑖 𝑏 ⇒ 𝑏 ∈ 𝛢).
The notion of a sub-ARS in [13] is only defined for non-indexed ARSs; we extend the

definition here to encompass indexed ARSs, as long as the base ARS and sub-ARS share the
same index type, by requiring the restriction and closure properties to hold for each individ-
ual rewrite relation.

In Lean, we choose to represent a sub-ARS as a separate structure, SubARS, which contains
an ARS (ars) with the additional properties restrict and closed.

/-- If `S: SubARS B`, `S` is a sub-ARS of B. -/
structure SubARS (B: ARS β I) where

/-- This SubARS contains the elements in the subtype `{b ㌦㍮ p b}`. -/
p: β → Prop
/-- The ARS of this SubARS. -/
ars: ARS {b: β ㌦㍮ p b} I
/-- `SubARS.ars.rel i` is the _restriction_ of `B.rel i` to the subtype. -/
restrict: ∀(i: I) (a b: {b ㌦㍮ p b}), ars.rel i a b ↔ B.rel i a b
/-- `{b ㌦㍮ p b}` is _closed_ under `B.rel i` -/
closed: ∀(i: I) (a b: β), p a ∧ B.rel i a b → p b

To translate the subset requirement𝛢 ⊆ 𝛣, we require the elements of ars to have the type
{b ㌦㍮ p b}, a subtype of β.

We translate the restriction property by requiring ars.rel and B.rel to be equivalent for all
i: I and a b: {b ㌦㍮ p b}. Essentially, the intersection operation ∩ 𝛢2 is moved into the type
system, and we are left with⇝𝑖 = →𝑖, which by propositional and functional extensionality
is equivalent to 𝑎 ⇝𝑖 𝑏 ⇔ 𝑎 →𝑖 𝑏. Note that Lean does not complain when we pass a: {b
㌦㍮ p b} to B.rel, which expects a value of type β; this is because Lean automatically inserts a
coercion from a subtype to the base type.

The closure property also has a slightly different form; instead of 𝑎 ∈ 𝛢, 𝑏 ∈ 𝛣, we let a b:
β and require a to satisfy the subtype predicate p.
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This is only one possible definition of a sub-ARS. Our initial definition instead required
the restriction and closure properties to hold for the union of rewrite relations, and allowed
reduction-equivalent ARSs to have a sub-ARS relationship. Mixing this notion of reduction
equivalence and sub-ARSs later turned out to be problematic, because it makes the sub-ARS
definition too weak, so they have been disentangled in the final definition.

Especially salient is the choice of which fields to make part of the type, and which not to.
Our initial definition kept the subtype property p in the type, just like Subtype does. This
means distinct sub-ARSs have different types, which can be inconvenient in cases where you
want to construct, for instance, a set of sub-ARSs, since all elements in a set need to have the
same type. In the end, we decided to keep the property out of the type for this reason.

Now, of course, the downside of using subtypes is that it is not immediately obvious that
this definition is equivalent to Definition 3.14. This is one of the pitfalls of interactive theo-
rem proving: if we incorrectly formalize a definition, we might think we have proved some-
thing while actually proving something subtly different. Hopefully, careful consideration
will convince the reader that our translation is indeed sensible.

Lemma 3.15 The restriction and closure properties of a sub-ARS are respected by the union
of rewrite relations, as well as the reflexive-transitive closure.

variable (S: SubARS A)

lemma SubARS.restrict_union:
∀a b, S.ars.union_rel a b ↔ A.union_rel a b む= ㋽㍉㎕

lemma SubARS.closed_union:
∀a b, S.p a ∧ A.union_rel a b → S.p b む= ㋽㍉㎕

lemma SubARS.star_restrict:
∀i a b, (S.ars.rel i)∗ a b ↔ (A.rel i)∗ a b む= ㋽㍉㎕

lemma SubARS.star_closed:
∀i a b, S.p a ∧ (A.rel i)∗ a b → S.p b む= ㋽㍉㎕

Proof. Trivial from the reduction and closure properties of a sub-ARS.

3.2.3 Reduction graphs and components

We immediately use our sub-ARS definition to define the notions of reduction graph and
component.
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Definition 3.16 (Reduction graph and component). Letℬ = (𝛣,→𝑖∈𝛪) be an ARS.

(i) For all 𝛢 ⊆ 𝛣 we can generate a sub-ARS 𝒢(𝛢,→𝑗) of ℬ, which contains exactly
all elements reachable using →𝑗 from an element in 𝛢. In particular, we are often
interested in the sub-ARS generated by a single element 𝑏 ∈ 𝛣; this is also called the
reduction graph of 𝑏, sometimes abbreviated as 𝒢(𝑏).
/-- The sub-ARS generated by a set of elements of β -/
def SubARS.generate (B: ARS β I) (s: Set β) : SubARS B where

p む= (fun b ↦ ∃a, a ∈ s ∧ B.union_rel∗ a b)
ars む= ⟨fun i a b ↦ B.rel i a b⟩
restrict む= /- proof omitted -/
closed む= /- proof omitted -/

/-- The reduction graph of `b` in `B` consists of all reducts of `b` -/
def ARS.reduction_graph (B: ARS β I) (b: β) : SubARS B む=

SubARS.generate B {b}

(ii) A (connected) component of ℬ is a sub-ARS containing a nonempty set of elements
which are all equivalent to one another, with the reduction relation restricted to this
set of elements. Just as with reduction graphs, we often talk about the component of
an element 𝑏 ∈ 𝛣, which consists of all elements 𝑎 ≡ 𝑏. In Lean, we extend the SubARS
structure to form a Component structure, which has the additional properties that you
would expect for a component.

structure Component extends SubARS A where
component_restrict: ∀{a b}, p a → p b → A.conv a b
component_closed: ∀{a b}, p a → A.conv a b → p b
component_nonempty: ∃a, p a

def ARS.component (a: α): Component A where
p む= (A.conv a ·)
ars む= ⟨fun i a b ↦ A.rel i a b⟩
restrict む= /- proof omitted -/
closed む= /- proof omitted -/
component_restrict む= /- proof omitted -/
component_closed む= /- proof omitted -/
component_nonempty む= /- proof omitted -/

Now that we have defined the basic structures in abstract rewriting, we can begin to define
the key properties of rewrite relations. In the following sections, we present a number of
definitions related to confluence and normalization, and we will end chapter 3 by defining a
few miscellaneous properties.
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3.3 Confluence
In this section, we present the definitions related to confluence that are used in the rest of
this thesis. So we can compare and contrast the two, we have interspersed the traditional
definitions with our Lean definitions.

Definition 3.17 (Confluence, [13, p. 10]). Let𝒜 = (𝛢, {→𝑖,→𝑗}) be an ARS. In Lean,
let α, r, s be as defined in Section 2.3 (we will not mention this in the sequel).

(i) If ∀𝑎, 𝑏, 𝑐 ∈ 𝛢, (𝑐 ←𝑗 𝑎 →𝑖 𝑏 ⇒ ∃𝑑 ∈ 𝛢, (𝑐 ↠𝑖 𝑑 ↞𝑗 𝑏)), we say→𝑖 commutes
weaklywith→𝑗.

def weakly_commutes む=
∀a b c, r a b ∧ s a c → ∃d, s∗ b d ∧ r∗ c d

(ii) If↠𝑖 and↠𝑗 commute weakly, we say→𝑖 and→𝑗 commute.

def commutes む=
∀a b c, r∗ a b ∧ s∗ a c → ∃d, s∗ b d ∧ r∗ c d

(iii) Let 𝑎 ∈ 𝛢. If ∀𝑏, 𝑐 ∈ 𝛢, (𝑐 ←𝑖 𝑎 →𝑖 𝑏 ⇒ ∃𝑑 ∈ 𝛢, (𝑐 ↠𝑖 𝑑 ↞𝑖 𝑏)), we say 𝑎 is
weakly confluent with respect to→𝑖. The reduction relation→𝑖 is weakly confluent
or weakly Church-Rosser (WCR) if every 𝑎 ∈ 𝛢 is weakly confluent. Weak confluence
is also called local confluence.

def weakly_confluent む=
∀a b c, r a b ∧ r a c → ∃d, r∗ b d ∧ r∗ c d

(iv) Let 𝑎 ∈ 𝛢. If ∀𝑏, 𝑐 ∈ 𝛢, (𝑐 ←𝑖 𝑎 →𝑖 𝑏 ⇒ ∃𝑑 ∈ 𝛢, (𝑐 →=
𝑖 𝑑 ←=

𝑖 𝑏)), we say 𝑎
is subcommutative with respect to→𝑖. The reduction relation→𝑖 is subcommutative
(CR≤1) if every 𝑎 ∈ 𝛢 is subcommutative.

def subcommutative む=
∀a b c, r a b ∧ r a c → ∃d, r⁼ b d ∧ r⁼ c d

(v) Let 𝑎 ∈ 𝛢. If ∀𝑏, 𝑐 ∈ 𝛢, (𝑐 ←𝑖 𝑎 →𝑖 𝑏 ⇒ ∃𝑑 ∈ 𝛢, (𝑐 →𝑖 𝑑 ←𝑖 𝑏)), we say
𝑎 has the diamond property (DP) with respect to→𝑖. The reduction relation→𝑖 has
the diamond property if every 𝑎 ∈ 𝛢 has the diamond property.

def diamond_property む=
∀a b c, r a b ∧ r a c → ∃d, r b d ∧ r c d

(vi) Let 𝑎 ∈ 𝛢. If ∀𝑏, 𝑐 ∈ 𝛢, (𝑐 ↞𝑖 𝑎 ↠𝑖 𝑏 ⇒ ∃𝑑 ∈ 𝛢, (𝑐 ↠𝑖 𝑑 ↞𝑖 𝑏)), we say
𝑎 is confluent with respect to→𝑖. The reduction relation→𝑖 is confluent or Church-
Rosser (CR) if every 𝑎 ∈ 𝛢 is confluent.

def confluent む=
∀a b c, r∗ a b ∧ r∗ a c → ∃d, r∗ b d ∧ r∗ c d
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Most of these definitions have both local (per-element) and global (for the set of all ele-
ments) versions. The given Lean definitions are for the global versions, but there are separate
local versions where necessary, which have a prime symbol added to their name. For example,
confluent' r ameans the element a is confluent with respect to r.

Since these properties are defined on the individual rewrite relations, we do not use the
ARS structure in Lean – we will see it appear again later, however. Additionally, note that
we do not need to give a type ascription for a, b, c, d in Lean; since our relations are typed,
Lean infers that these variables must have type α.

Other than these technicalities, the Lean definitions are essentially direct translations. The
only exception is our definition of commutation, which is defined directly instead of being
based on weak commutation. Note that our direct definition makes use of the fact that r∗∗
= r∗, i.e. taking the reflexive-transitive closure is idempotent.

A few properties are globally equivalent to confluence, and are often used in confluence
proofs. These are listed in Definition 3.18.

Definition 3.18 (Properties equivalent to confluence). Let𝒜 = (𝛢,→) be an ARS.

(i) If ∀𝑎, 𝑏, 𝑐 ∈ 𝛢, (𝑐 ← 𝑎 ↠ 𝑏 ⇒ ∃𝑑 ∈ 𝛢, (𝑐 ↠ 𝑑 ↞ 𝑏)), we say the relation→ is
semi-confluent.

def semi_confluent む=
∀a b c, r∗ a b ∧ r a c → ∃d, r∗ b d ∧ r∗ c d

(ii) If ∀𝑎, 𝑏 ∈ 𝛢, 𝑎 ≡ 𝑏 ⇒ ∃𝑐 ∈ 𝛢, 𝑎 ↠ 𝑐 ↞ 𝑏, we say the relation → is conversion
confluent.

def conv_confluent む=
∀a b, (r≡) a b → ∃c, r∗ a c ∧ r∗ b c

Lemma 3.19 Global confluence, semi-confluence, and conversion confluence are equivalent.

Proof. See semi_confluent_iff_confluent and conv_confluent_iff_confluent.

Note that conversion confluence is often referred to as the Church-Rosser property. Since
[13] uses that name interchangeably with confluence, we use the separate name conversion
confluence.

For an example of how to use the Lean definitions, let us consider the is_succ definition
from Example 3.4. We can prove that is_succ is confluent:

Example 3.20 (Confluence of is_succ).

example: confluent is_succ む= by
rintro a b c ⟨hab, hac⟩
show ∃d, is_succ∗ b d ∧ is_succ∗ c d
· use (max b c)
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show is_succ∗ b (max b c) ∧ is_succ∗ c (max b c)

suffices b ≤ (max b c) ∧ c ≤ (max b c) by
rwa [rtc_is_succ_iff_le, rtc_is_succ_iff_le]

show b ≤ (max b c) ∧ c ≤ (max b c)
· omega

Of course, this is a bit of a contrived example, as there is no real divergence here, and we
don’t need the hypotheses hab: is_succ∗ a b and hac: is_succ∗ a c. Nevertheless, it shows
the main elements of a confluence proof: to show that a relation r is confluent, we take an
arbitrary a, b, c and proofs that r∗ a b and r∗ a c, and we must show that there is a d such
that r∗ b d and r∗ c d.

3.4 Normalization
In this section, we present various definitions related to normalization. As with our conflu-
ence definitions, we intersperse the ‘on paper’ definitions with Lean definitions.

Definition 3.21 (Normalization). Let𝒜 = (𝛢,→) be an ARS.

(i) 𝑎 ∈ 𝛢 is a normal form if there exists no 𝑏 ∈ 𝛢 such that 𝑎 → 𝑏.
def normal_form (a: α) む=

¬∃b, r a b
(ii) 𝑎 ∈ 𝛢 is weakly normalizing (WN) if 𝑎 ↠ 𝑏 for some normal form 𝑏 ∈ 𝛢. The

reduction relation→ is weakly normalizing if every 𝑎 ∈ 𝛢 is weakly normalizing.

def weakly_normalizing む=
∀a, ∃b, r∗ a b ∧ normal_form r b

(iii) 𝑎 ∈ 𝛢 is strongly normalizing (SN) if there are no infinite reduction sequences starting
from 𝑎. The reduction relation→ is strongly normalizing if every 𝑎 ∈ 𝛢 is strongly
normalizing.

def strongly_normalizing む=
¬∃(f: ℕ → α), reduction_seq r ⊤ f

(iv) If 𝑎 ≡ 𝑏 ⇒ 𝑎 ↠ 𝑏 for all 𝑎 ∈ 𝛢 and any normal form 𝑏 ∈ 𝛢, we say → has the
normal form property (NF).

def normal_form_property む=
∀a b, normal_form r b → (r≡) a b → r∗ a b
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(v) If 𝑎 ≡ 𝑏 ⇒ 𝑎 = 𝑏 for all normal forms 𝑎, 𝑏 ∈ 𝛢, we say→ has the unique normal
form property (UN).

def unique_normal_form_property む=
∀a b, normal_form r a → normal_form r b → (r≡) a b → a = b

(vi) If, for every 𝑐 ∈ 𝛢 that reduces to two normal forms 𝑎, 𝑏 ∈ 𝛢, we have 𝑎 = 𝑏, we say
→ has the unique normal form property with respect to reduction (UN→).

def unique_normal_form_property_r む=
∀c a b, normal_form r a → normal_form r b → r∗ c a → r∗ c b → a = b

The most notable difference in our Lean definitions is in our definition of strong normal-
ization; instead of defining a relation as strongly normalizing if all elements are strongly nor-
malizing, we simply define a relation to be strongly normalizing if it admits no infinite rewrite
sequences. We again have separate per-element definitions of weak and strong normalization
(weakly_normalizing' and strongly_normalizing').

Strong normalization is related to another property of binary relations: well-foundedness.
There are a number of formulations of well-foundedness, which are equivalent if one as-
sumes the axiom of choice. The Lean definition is as follows:

Definition 3.22 (Well-foundedness).

/-- The accessibility predicate. If `Acc r x`, `x` is accessible through `r`. -/
inductive Acc {α} (r: α → α → Prop): α → Prop where

/-- A value is accessible if all of its descendants are also accessible. -/
| intro (x: α) (h: (y: α) → r y x → Acc r y): Acc r x

/-- A relation `r: α → α → Prop` is well-founded if all elements of `α`
are accessible within `r`. -/

inductive WellFounded (r: α → α → Prop): Prop where
| intro (h: ∀x, Acc r x): WellFounded r

The main application of well-foundedness is well-founded induction: if we have a well-
founded relation r: α → α → Prop and a predicate p: α → Prop, in order to prove ∀x:
α, p x, it suffices to prove ∀x, (∀y, r y x → p y) → p x. If we let α む= ℕ and r む= (fun a b
↦ a < b), we get strong induction on natural numbers; well-founded induction is a general-
ization of strong induction to other well-founded relations. In the case of Lean, the principle
of well-founded induction follows from structural induction on the accessibility predicate.

The above definition is equivalent to two alternative definitions, given below.
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Definition 3.23 (Well-foundedness, alternative).

(i) If a relation𝑅 on 𝛼 is well-founded, there are no infinitely descending sequences
⋯𝑅 𝑦2 𝑅 𝑦1 𝑅 𝑦0 (see the proof of Theorem 3.24, below).

(ii) If a relation 𝑅 on 𝛼 is well-founded, it has a minimum on every set𝛸 of elements of 𝛼,
i.e. there is some element 𝑥 ∈ 𝛸 s.t. ∀𝑦, ¬𝑦𝑅𝑥. (WellFounded.wellFounded_iff_has_min)

While the similarity is non-obvious fromDefinition 3.22, Definition 3.23(i) is almost iden-
tical to strong normalization: if a relation is strongly normalizing, there are no infinitely as-
cending sequences 𝑦0 𝑅 𝑦1 𝑅 𝑦2 𝑅 ⋯; this leads us to the following correspondence between
strong normalization and well-foundedness.
Theorem 3.24 A relation𝑅 is strongly normalizing if and only if its inverse is well-founded.

Note that our proof below only makes use of Definition 3.22; if we assume equivalence to
Definition 3.23(i), the proof is immediate.

Proof. We prove the forward and backward implication separately.

Case 1: SN 𝑅 ⇒ WF 𝑅−1

We take the contrapositive. Assume 𝑅−1 is not well-founded. Then there is an element
which is not accessible. For any inaccessible element 𝑥, there must be an element 𝑦 with
𝑦𝑅−1𝑥 (= 𝑥𝑅𝑦) which is also inaccessible. This allows us to build an infinite ascending 𝑅-
chain of inaccessible elements, contradicting strong normalization.

Case 2: WF 𝑅−1 ⇒ SN 𝑅
Assume𝑅−1 is well-founded. We wish to show that𝑅 is strongly normalizing, i.e. there are

no infinite ascending𝑅-chains. Assume there exists some element 𝑎 ∶ 𝛼 – we can freely do so,
because if 𝛼 is uninhabited,𝑅 is certainly strongly normalizing. Wemust show that there can
be no infinite sequence 𝑓∶ ℕ → 𝛼 starting with 𝑎which is an𝑅-chain, i.e.

∀𝑓, 𝑓(0) = 𝑎 ⇒ ¬∀𝑛, 𝑓(𝑛) 𝑅𝑓(𝑛 + 1)
We proceed by well-founded induction on 𝑎. We must then prove

∀𝑎,(∀𝑦, 𝑦𝑅−1𝑎 ⇒ ∀𝑓, 𝑓(0) = 𝑦 ⇒ ¬∀𝑛, 𝑓(𝑛) 𝑅 𝑓(𝑛 + 1))
⇒ (∀𝑓, 𝑓(0) = 𝑎 ⇒ ¬∀𝑛, 𝑓(𝑛) 𝑅𝑓(𝑛 + 1))

Fix 𝑎, the induction hypothesis, and 𝑓, and assume 𝑓(0) = 𝑎. We take the contrapositive
with respect to the induction hypothesis. We then have to prove

(∀𝑛, 𝑓(𝑛) 𝑅 𝑓(𝑛 + 1)) ⇒ ∃𝑦, 𝑦𝑅−1𝑎 ∧ ∃𝑔, 𝑔(0) = 𝑦 ∧ ∀𝑛, 𝑔(𝑛) 𝑅 𝑔(𝑛 + 1)
Assume ∀𝑛, 𝑓(𝑛) 𝑅 𝑓(𝑛 + 1). Let 𝑦 ≔ 𝑓(1). We have 𝑦𝑅−1𝑎 = 𝑓(0) 𝑅𝑓(1) by assump-

tion. Let 𝑔(𝑛) ≔ 𝑓(𝑛+1). We have 𝑔(0) = 𝑓(1) = 𝑦 by definition, and∀𝑛, 𝑔(𝑛) 𝑅 𝑔(𝑛+1)
by assumption.

Linking strong normalization to Lean’s notion of well-foundedness also gives us an easy
proof that strong normalization implies weak normalization.

28

https://segfault.party/thesis-docs/find/?pattern=WellFounded.wellFounded_iff_has_min#doc
https://segfault.party/thesis-docs/find/?pattern=Thesis.sn_iff_wf_inv#doc


Lemma 3.25 Any strongly normalizing relation𝑅 is weakly normalizing.

lemma wn_of_sn:
strongly_normalizing r → weakly_normalizing r む= ㋽㍉㎕

Proof. Let 𝑎 be an element in 𝛢. We wish to show that 𝑎 is weakly normalizing, i.e. 𝑎 has a
reduct that is a normal form. Since𝑅 is strongly normalizing, its inverse is well-founded, and
thus has a minimum on any non-empty subset of 𝛢. Let 𝛸 ≔ { 𝑏 ∣ 𝑎𝑅∗𝑏 } be the set of
reducts of a. 𝛸 is nonempty, since 𝑎 is a 0-step reduct of 𝑎. Then 𝑅−1 has a minimum on
𝛸, that is, ∃𝑥 ∈ 𝛸, ∀𝑦, ¬𝑦𝑅−1𝑥. Since 𝑥 ∈ 𝛸, 𝑥 is a reduct of 𝑎, and since ∀𝑦, ¬𝑥𝑅𝑦, 𝑥 is a
normal form.

3.5 Interrelations between ARS properties
As shown in Fig. 3, many of the basic properties of ARSs are interrelated. Most of these
implications are intuitive translations of the informal proofs, and will not be discussed fur-
ther. Instead, in the sequel, we will focus on a few key properties and theorems (Newman’s
Lemma, cofinality, decreasing diagrams) and discuss these in detail.
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4 Newman's Lemma
As discussed in the introduction, instead of directly proving that a rewriting system is con-
fluent, we often make use of confluence criteria: simpler properties which together imply
confluence. One such criterion isNewman’s Lemma.

Theorem 4.1 (Newman’s Lemma). Every strongly normalizing, weakly confluent reduc-
tion relation is confluent.

lemma newman (hsn: strongly_normalizing r) (hwc: weakly_confluent r):
confluent r む= ㋽㍉㎕

There are various proofs of Newman’s Lemma in the literature, ranging in complexity. We
will discuss the three proofs contained in [13], as they provide an interesting case study on
how different proofs of the same theorem may be more or less amenable to formalization in
a proof assistant.

4.1 Proof by lack of ambiguous elements
We start with the proof given by Barendregt [1, Proposition 3.1.25], which is themost straight-
forward to translate to Lean. It shows confluence via uniqueness of normal forms, by con-
structing an infinite reduction sequence of elements having multiple distinct normal forms
(so-called ambiguous elements), which contradicts our assumption of strong normalization.

Our formalization bears many similarities to the pen-and-paper proof in [13, p. 15], but
makes explicit some steps that are deemed obvious in that proof.

Lemma 4.2 Weak normalization and uniqueness of normal forms (with respect to reduc-
tion) imply confluence.

lemma confluent_of_wn_unr (hwn: weakly_normalizing r) (hun: unique_nf_prop_r r):
confluent r む= ㋽㍉㎕

Proof. Fix 𝑎, 𝑏, 𝑐 and assume 𝑎 →∗ 𝑏 and 𝑎 →∗ 𝑐. By weak normalization, 𝑏 and 𝑐 have
normal forms nf𝑏 and nf𝑐, such that 𝑏 →∗ nf𝑏 and 𝑐 →

∗ nf𝑐. Since 𝑏 and 𝑐 are reducts of 𝑎,
these are also normal forms of 𝑎. By the unique normal form property w.r.t. reduction, we
must have nf𝑏 = nf𝑐.

Lemma 4.3 If an element 𝑎 has two distinct normal forms, the reduction sequence from 𝑎
to each normal form is at least one step long.

lemma trans_step_of_two_normal_forms {a d₁ d₂: α}
(hd₁: normal_form r d₁) (hd₂: normal_form r d₂)
(had₁: r∗ a d₁) (had₂: r∗ a d₂) (hne: d₁ ≠ d₂): r⁺ a d₁ ∧ r⁺ a d₂ む= ㋽㍉㎕
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Proof. Weproceed by contradiction; assume at least one of𝑑1 and𝑑2 has an empty reduction
sequence from 𝑎 – that is, at least one of 𝑑1, 𝑑2 is equal to 𝑎.

If both elements are equal to 𝑎, they are not distinct. Alternatively, without loss of gener-
ality, let 𝑑1 be equal to 𝑎, 𝑑2 be distinct from 𝑎. Then 𝑑1 cannot be a normal form; it has a
reduct (𝑑2).
Definition 4.4 An ambiguous element is an element with at least two distinct normal
forms.

def ambiguous (a: α) む=
∃(b c: α), r∗ a b ∧ r∗ a c ∧ normal_form r b ∧ normal_form r c ∧ b ≠ c

Lemma 4.5 If 𝑟 is weakly normalizing and weakly confluent, any element that is ambigu-
ous in 𝑟 has a one-step reduct which is also ambiguous.

lemma exists_ambiguous_reduct_of_ambiguous
(hwn: weakly_normalizing r) (hwc: weakly_confluent r):
∀a, ambiguous r a → ∃b, r a b ∧ ambiguous r b む= ㋽㍉㎕

Proof. Assume 𝑎 is ambiguous. Then it has at least two distinct normal forms 𝑑1 and 𝑑2. By
Lemma 4.3, we must have 𝑎 → 𝑏 ↠ 𝑑1 and 𝑎 → 𝑐 ↠ 𝑑2 for some 𝑏, 𝑐.

By weak confluence, 𝑏 and 𝑐 have a common reduct, 𝑑, which by weak normalization has a
normal form, nf𝑑. nf𝑑 must be distinct from at least one of 𝑑1, 𝑑2; without loss of generality,
say nf𝑑 ≠ 𝑑1. Then 𝑏, having two distinct normal forms, is our desired ambiguous one-step
reduct.

Lemma 4.6 Any weakly confluent relation that does not have the unique normal form
property w.r.t. reduction is not strongly normalizing.

lemma not_sn_of_wc_not_un (hwc: weakly_confluent r) (hnu: ¬unique_nf_prop_r r):
¬strongly_normalizing r む= ㋽㍉㎕

Proof. Assume 𝑟 is weakly confluent, but does not have the unique normal form property
w.r.t. reduction. We may also freely assume 𝑟 is weakly normalizing; if not, it certainly isn’t
strongly normalizing.

Since 𝑟 does not have the unique normal form property, it must have an element which
has two distinct normal forms, i.e. an ambiguous element.

Using Lemma 4.5, we can build an infinite chain of ambiguous reducts, contradicting
strong normalization.

We can then prove Newman’s Lemma (Theorem 4.1) as follows:

Proof. Assume 𝑟 is strongly normalizing and weakly confluent. By Lemma 3.25, 𝑟 is weakly
normalizing. Then, by Lemma 4.2, it suffices for confluence to prove that 𝑟 has the unique
normal form property w.r.t. reduction, which is obvious from Lemma 4.6.
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Where the other two proofs rely on more complicated notions, such as well-founded in-
duction, this proof shines in its use of elementary notions in deriving confluence. Although
certainly not developed with the intent of formalization, this proof is therefore quite easy to
translate to Lean.

4.2 Proof by well-founded induction
Although Barendregt’s proof is undoubtedly elegant, it may be surpassed by the proof by
well-founded induction, which needs no prerequisites other than what we have already for-
malized.

Proof ([13, p. 15–16]). Since→ is strongly normalizing,← is well-founded byTheorem 3.24.
Fix 𝑎. We wish to prove that 𝑎 is confluent, that is ∀𝑏𝑐, 𝑐 ↞ 𝑎 ↠ 𝑏 ⇒ ∃𝑑, 𝑏 ↠ 𝑑 ↞ 𝑐.

We proceed by well-founded induction on 𝑎, with respect to the inverse of our relation→.
Our induction hypothesis is that all one-step reducts of 𝑎 are confluent, that is, ∀𝑎′, 𝑎′ ←

𝑎 ⇒ (∀𝑏𝑐, 𝑐 ↞ 𝑎′ ↠ 𝑏 ⇒ ∃𝑑, 𝑏 ↠ 𝑑 ↞ 𝑐).
Fix 𝑏 and 𝑐, and assume 𝑎 ↠ 𝑏 and 𝑎 ↠ 𝑐. Without loss of generality, assume that both 𝑏

and 𝑐 are distinct from 𝑎; if not, one of them is our desired common reduct 𝑑. Then we have
𝑐 ↞ 𝑐′ ← 𝑎 → 𝑏′ ↠ 𝑏 for some 𝑏′, 𝑐′.

By weak confluence, 𝑏′ and 𝑐′ have a common reduct, call it 𝑑′. That is, 𝑏′ ↠ 𝑑′ ↞
𝑐′. Since 𝑏′ and 𝑐′ are one-step reducts of 𝑎, they are confluent by our induction hypothesis.
Then, since 𝑑′ and 𝑏 are both reducts of 𝑏′, they have a common reduct, call it 𝑒. Since 𝑐 and
𝑒 (via 𝑑′) are both reducts of 𝑐′, they have a common reduct, call it 𝑑. This 𝑑 is a common
reduct of 𝑏 and 𝑐, just as we desire.

𝑎 𝑏′ 𝑏

𝑐′ 𝑑′ 𝑒

𝑐 𝑑

WCR CR(𝑏′)

CR(𝑐′)

Figure 4: An illustration of the proof of Newman’s Lemma by well-founded induction.

Figure 4 shows this proof in the form of a diagram. This proof is perhaps the most elegant
in Lean, as it uses no auxiliary notions other than well-founded induction, which is already
well-supported in Lean.
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The proof in [13] is written as if it requires←+ to be well-founded, but by careful read-
ing of the proof, we do not end up requiring it. Nonetheless, a sufficient lemma is already
formalized in Lean as WellFounded.transGen.

Lemma 4.7 If 𝑟 is well-founded, so is its transitive closure 𝑟+.

lemma trans_wf_of_wf (hwf: WellFounded r): WellFounded r⁺ む=
hwf.transGen

4.3 Proof by terminating peak-elimination
Since our last proof is considerably more complex, we provide a complete proof sketch first.

Proof sketch ([13, p. 16–17], modified). Assume → is strongly normalizing and weakly con-
fluent. We wish to prove that→ is confluent. By Lemma 3.19 it suffices to prove that→ is
conversion confluent, i.e., for all 𝑎, 𝑏 ∈ 𝛢with 𝑎 ≡ 𝑏, there exists a common reduct 𝑐.

Let 𝑎 ≡ 𝑏. Then there exist 𝑎0, 𝑎1, … , 𝑎𝑛 ∈ 𝛢 such that 𝑎 = 𝑎0 ↔ ⋯ ↔ 𝑎𝑛 = 𝑏.
We view 𝑎0 ↔ ⋯ ↔ 𝑎𝑛 as a landscape, which may contain peaks 𝑎𝑖−1 ← 𝑎𝑖 → 𝑎𝑖+1.
If a landscape contains no peaks, then it must meet at some point which is reached by only
taking forward steps from 𝑎, and only backward steps from 𝑏. This meeting point is then our
desired common reduct 𝑐 (see Fig. 5).

Assume our landscape does contain peaks. By weak confluence, we can eliminate a peak
𝑎𝑖−1 ← 𝑎𝑖 → 𝑎𝑖+1, producing a valley 𝑎𝑖−1 → 𝑐1 ↠ 𝑑 ↞ 𝑐′1 ← 𝑎𝑖+1 (see Fig. 6). Note that
this may create new peaks at 𝑎𝑖−1 and 𝑎𝑖+1, respectively, so it does not immediately help us.

The key observation is that we can show that, since→ is strongly normalizing, repeating
this peak-elimination procedure must terminate. This means we must end up with a land-
scape which contains no peaks, and therefore contains a common reduct 𝑐 as described ear-
lier.

This argument usesmultisets: sets that may contain an element multiple times. To a land-
scape 𝑎0 ↔ ⋯ ↔ 𝑎𝑛 we associate the multiset [𝑎0, … , 𝑎𝑛]. As→ is strongly normalizing,
← is well-founded (Theorem 3.24), as is ←+ (Lemma 4.7). We can extend ←+ to a well-
founded order on multisets of 𝛢, ←+

# . The idea is that, for two multisets 𝛭,𝛮, we have
𝛭 ←+

# 𝛮 if𝛭 is derived from𝛮 by replacing one or more elements by smaller elements
(w.r.t. ←+). Since → is strongly normalizing, taking multisets that are smaller w.r.t. ←+

#
moves the elements in the multiset towards their normal forms, and since all reduction se-
quences are finite,←+

# must be well-founded.
We argue that performing peak elimination on a landscape𝛭 produces a new landscape

𝛭′ with𝛭′ ←+
# 𝛭. If𝛭 ≔ [𝑎0, … , 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, … , 𝑎𝑛], then performing peak elimina-

tion on 𝑎𝑖 yields the multiset𝛭′ ∶= [𝑎0, … , 𝑎𝑖−1, 𝑐1, … , 𝑑, … , 𝑐′1, … , 𝑎𝑖+1, … , 𝑎𝑛]. Note that
the replacement elements, [𝑐1, … , 𝑑, … , 𝑐′1], are all reducts of 𝑎𝑖 byWCR. Therefore,𝛭′ ←+

#
𝛭, and by well-foundedness of the multiset relation, our repeating peak-elimination proce-
dure must terminate.
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𝑐 = 𝑎 = 𝑎0 𝑎𝑛 = 𝑏
𝑎 = 𝑎0 𝑐 𝑎𝑛 = 𝑏
𝑎 = 𝑎0 𝑎𝑛 = 𝑏 = 𝑐

Figure 5: Landscapes without peaks, and their common reducts 𝑐.

𝑎0 𝑎𝑖−1

𝑎𝑖

𝑎𝑖+1 𝑎𝑛

𝑑

𝑐1 𝑐′1

Figure 6: A single step in our peak-elimination procedure.

This proof is by far the most complex to translate to Lean. In part, this is because the
proof requires a few idiosyncratic notions that are not yet formalized, such as landscapes and
peaks. Multisets are available in Lean (Multiset), but the multiset extension of a relation and
a proof of its well-foundedness are not. The proofs of the prerequisites already take up a few
hundred lines of Lean code.

Aside from the cost of formalizing its prerequisites, the proof itself is simply not well-
suited to Lean. Because of the geometric intuition behind the proof, it is well-suited to a
pen-and-paper environment, where illustrations can help the reader along, and it is easy to
see how sequences are split up into disjoint parts. In Lean, we have no such luck, and many
of the steps that involve manipulating reduction sequences and multisets are very tedious. In
the end, formalizing this proof took upwards of a week, whereas the other proofs could be
formalized in a few hours at most.

We will detail the Lean proof below. We start by formalizing the multiset order extension
and proving that it is well-founded if the underlying relation is well-founded. Then, we de-
fine various helper lemmas for finite symmetric reduction sequences, showing that such a
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sequence contains a common reduct of the endpoints if it contains no peaks. Armed with
these prerequisites, we will show that a single step in our peak-elimination process decreases
the multiset of elements in the sequence with respect to the multiset order. Lastly, we tie
everything together by showing that, if our underlying relation is well-founded, this process
must terminate.

4.3.1 Multisets

As mentioned, Multisets are available in Lean, where they are modeled as a quotient type of
lists by permutation. On these multisets, we can define the following relation, which extends
a relation on the elements of the multiset.

Definition 4.8 [Dershowitz-Manna ordering, [13, p. 821]] Let← ⊆ 𝛢 × 𝛢 be a relation
on some set 𝛢. The multiset extension of←, denoted←#, is the smallest transitive relation
satisfying

if ∀𝑥 ∈ 𝛭′, 𝑥 ← 𝑠, then𝛭+𝛭′ ←# 𝛭+ {𝑠} (1)

In essence, a multiset decreases according to the relation when we replace an element with
a subset of its reducts. This notion was first introduced by Dershowitz and Manna in [2],
where it was shown to be a well-founded order on multisets over𝛢 if the underlying relation
is a well-founded order over 𝛢. It is therefore often referred to as the Dershowitz-Manna
ordering.

In Lean, we first define←1
#, the smallest relation that satisfies Eq. (1), as an inductive type,

and then define the Dershowitz-Manna ordering as the transitive closure of that relation.

inductive MultisetExt1 : Multiset α → Multiset α → Prop where
| rel (M M': Multiset α) (s: α) (h: ∀m ∈ M', r m s):

MultisetExt1 (M + M') (s ㌐㍘ₘ M)

abbrev MultisetExt む= (MultisetExt1 r)⁺

The literature contains various proofs that←# is a well-founded order if the underlying re-
lation← is well-founded, but these are generally based on notions that are intuitive on paper,
but non-trivial to formalize. For instance, the proof in [13, p. 822–823] proceeds by assum-
ing←# is not well-founded, and using an infinite←#-descending sequence to construct an
infinite yet finitely branching tree of elements, with edges (more or less) representing steps
along the underlying relation ←. By Kőnig’s Lemma, then, this tree must contain an infi-
nite path, which corresponds to an infinite←-decreasing sequence, which conflicts with←
being well-founded.

Isabelle/HOL already contains a formalization of the well-foundedness of the Dershowitz-
Manna ordering [10]. The proof it is based on, which is very distinct from the traditional
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proofs in the literature, makes use of the specific definition of well-foundedness in Defini-
tion 3.22. It does not require any auxiliary notions, and is well-suited to formalization, also
in Lean. The source of this proof was initially a mystery, but after doing some digital arche-
ology, could be traced to a mailing list message by Tobias Nipkow [8], where he notes that it
is due to Wilfried Buchholz, gives a PostScript version of the proof (available as a PDF here),
and notes that it is especially well-suited to formalizing in a theorem prover. We have used
this proof in our formalization.

Lemma 4.9 If← is well-founded, all multisets are accessible under←1
#.

lemma all_accessible (hwf: WellFounded r) (M: Multiset α):
Acc (MultisetExt1 r) M む= ㋽㍉㎕

Proof. See [9].

Lemma 4.10 If← is well-founded, then←# is well-founded.

lemma MultisetExt.wf (WellFounded r):
WellFounded (MultisetExt r) む= ㋽㍉㎕

Proof. By Lemma 4.7, it suffices to show that←1
# is well-founded, which is true by Lemma 4.9

and Definition 3.22.

4.3.2 Landscapes

As noted in the proof sketch, if two elements are equivalent, there must exist a symmetric
reduction sequence 𝑎 = 𝑎0 ↔ 𝑎1 ↔ … ↔ 𝑎𝑛 = 𝑏 between them, which we call a land-
scape. There are multiple ways of representing such a sequence; we used to have a separate
type SymmSeq for them, but at present simply encode them as reduction sequences over the
symmetric closure of→, ReductionSeq (SymmGen r). Curiously, although mathlib contains
the reflexive, transitive, reflexive-transitive, and equivalence closures, it does not contain the
symmetric closure, so SymmGen is defined by us.

We will assume the following variables are present in the subsequent Lean snippets:

variable {x y: α} {ss: List (α × α)} (hseq: ReductionSeq (SymmGen r) x y ss)

Lemma 4.11 If 𝑎 ≡ 𝑏, there exists a landscape 𝑎 = 𝑎0 ↔ ⋯ ↔ 𝑎𝑛 = 𝑏, and vice versa.

lemma exists_iff_rel_conv:
(r≡) x y ↔ ∃ss, ReductionSeq (SymmGen r) x y ss む= ㋽㍉㎕

Proof. By structural induction on (in the forward case) EqvGen and (in the backward case)
ReductionSeq.
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Definition 4.12 A landscape 𝑎 = 𝑎0 ↔ ⋯ ↔ 𝑎𝑛 = 𝑏 has a peak if it contains two steps
𝑎𝑖−1 ← 𝑎𝑖 → 𝑎𝑖+1.

def ReductionSeq.has_peak (hseq: ReductionSeq (SymmGen r) x y ss) む=
∃(n: ℕ) (h: n < ss.length - 1),
r ss[n].snd ss[n].fst ∧ r ss[n + 1].fst ss[n + 1].snd

Lemma 4.13 A landscape 𝑎 = 𝑎0 ↔ ⋯ ↔ 𝑎𝑛 = 𝑏 containing no peaks has one of three
forms:

1. Only forward steps, i.e. 𝑎 ↠ 𝑏,
2. Only backward steps, i.e. 𝑏 ↠ 𝑎,
3. A set of forward steps, followed by a set of backward steps, i.e. 𝑎 ↠ 𝑑 ↞ 𝑏.

lemma no_peak_cases (hnp: ¬hseq.has_peak):
ReductionSeq r x y ss ∨ ReductionSeq r y x (steps_reversed ss) ∨ ∃ss₁ ss₂, (
ss = ss₁ ++ ss₂ ∧ ss₁ ≠ [] ∧ ss₂ ≠ [] ∧
∃z, (ReductionSeq r x z ss₁ ∧ ReductionSeq r y z (steps_reversed ss₂))

) む= ㋽㍉㎕

Proof. By structural induction on the landscape.

We use the helper function steps_reversed here to reverse the list of steps as well as each
individual step, so a list of steps [(a, b), (b, c)] becomes [(c, b), (b, a)], as one would
expect when reversing a reduction sequence.

Corollary 4.14 If there is a landscape 𝑎 = 𝑎0 ↔ ⋯ ↔ 𝑎𝑛 = 𝑏 that contains no peaks, 𝑎
and 𝑏 have a common reduct.

lemma reduct_of_not_peak (hnp: ¬hseq.has_peak):
∃d, r∗ x d ∧ r∗ y d む= ㋽㍉㎕

Proof. Immediate from Lemma 4.13.

Aside from these core lemmas, the proof requires a lot of auxiliary lemmas that help with
manipulating sequences in a way that is obvious to humans. For instance, a landscape be-
tween 𝑎 and 𝑏 becomes a landscape between 𝑏 and 𝑎 by turning each forward step 𝑥 → 𝑦
into a backward step 𝑦 ← 𝑥; we can take or drop any number of steps from a landscape
to get another landscape; reversing the steps in a landscape twice yields the original steps; et
cetera. We omit them here for brevity.
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4.3.3 Peak elimination

Lemma 4.15 If a landscape 𝑎 = 𝑎0 ↔ ⋯ ↔ 𝑎𝑛 = 𝑏 contains a peak, and→ is weakly
confluent, there must be another landscape 𝑎 = 𝑎′0 ↔ ⋯ ↔ 𝑎′𝑚 = 𝑏, for which the multiset of
elements [𝑎′0, … , 𝑎′𝑚] is smaller (w.r.t. ←+

# ) than the multiset of elements [𝑎0, … , 𝑎𝑛].
lemma newman_step' (hwc: weakly_confluent r) (hp: hseq.has_peak):

∃(ss': _) (hseq': ReductionSeq (SymmGen r) x y ss'),
MultisetExt (r.inv)⁺ (Multiset.ofList hseq'.elems) (Multiset.ofList hseq.elems)

む= ㋽㍉㎕
This lemma is the meat of the argument. On paper, the argument is simple; in our proof

sketch, it takes up a single paragraph. That said, the description in the sketch is subtly in-
correct (can you spot the mistake?), and benefits from the reader’s intuition about reduction
sequences. Lean has no such intuition, and thus, this proof is quite long, requiring a lot of
intermediate steps where we prove we can split up the landscape or multiset of elements in a
certain way.

Proof. Let 𝑥 = 𝑥0 ↔ ⋯ ↔ 𝑥𝑛 = 𝑦 be a landscape, which has a peak 𝑥𝑖−1 ← 𝑥𝑖 → 𝑥𝑖+1.
We consider the case where 𝑥𝑖−1 = 𝑥𝑖+1 separately from the case where 𝑥𝑖−1 ≠ 𝑥𝑖+1.
If 𝑥𝑖−1 = 𝑥𝑖+1, then the steps 𝑥𝑖−1 ← 𝑥𝑖 → 𝑥𝑖+1 are superfluous, and can simply be

eliminated, yielding a smaller multiset with respect to←+
# because we remove two elements

𝑥𝑖 and 𝑥𝑖+1.
If not, we split up our landscape into two landscapes 𝑥0 ↔ ⋯ ↔ 𝑥𝑖−1 and 𝑥𝑖+1 ↔ ⋯ ↔

𝑥𝑛. By weak confluence of 𝑥𝑖, there must be two sequences 𝑥𝑖−1 = 𝑐1 → ⋯ → 𝑑 and
𝑥𝑖+1 = 𝑐′1 → ⋯ → 𝑑. We can then reconstitute a landscape from 𝑥0 to 𝑥𝑛 by concatenation:
𝑥0 ↔ ⋯ ↔ 𝑥𝑖−1 → ⋯ → 𝑑 ← ⋯ ← 𝑥𝑖+1 ↔ ⋯ ↔ 𝑥𝑛.

The elements in this landscape can be derived from the original elements by removing 𝑥𝑖
and replacing it with the reducts 𝑐1, … , 𝑑, … , 𝑐′1. Hence, the multiset of elements is smaller
with respect to←+

# .

Armed with Lemma 4.15, we can prove Newman’s Lemma (Theorem 4.1) as follows:

Proof. Assume→ is weakly confluent and strongly normalizing. We wish to show that→ is
confluent. By Lemma 3.19, it suffices to show that→ is conversion confluent.

Let 𝑎 ≡ 𝑏. We must show that 𝑎 and 𝑏 have a common reduct, 𝑐. By Corollary 4.14, it
suffices to show that there is a landscape between 𝑎 and 𝑏 that has no peaks.

By Lemma 4.11, there exists a landscape between 𝑎 and 𝑏. That means the set𝛭𝐿 of mul-
tisets corresponding to the elements of a landscape between 𝑎 and 𝑏 is nonempty.

By Theorem 3.24 and Lemmas 4.7 and 4.10, since→ is strongly normalizing,← and←+

are well-founded, as is←+
# . That means there must be a minimal multiset𝛭 corresponding

to a landscape between 𝑎 and 𝑏. This landscape satisfies our goal; it does not contain a peak,
for if it did, by Lemma 4.15, there would exist an even smaller multiset in𝛭, contradicting
the assertion that𝛭 is minimal.
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5 Cofinality
Our main result hinges on a specific property of countable, confluent systems: the cofinality
property. We will discuss the notion of cofinality and the theorems related to it below.

Definition 5.1 (Cofinality). Let𝒜 = (𝛢,→) be an ARS. Let 𝛣 ⊆ 𝛢.
(i) 𝛣 is cofinal in𝒜 if every 𝑎 ∈ 𝛢 reduces to an element in 𝛣: ∀𝑎 ∈ 𝛢, ∃𝑏 ∈ 𝛣, 𝑎 ↠ 𝑏.

def cofinal (s: Set α) む=
∀a, ∃b ∈ s, r∗ a b

(ii) A reduction sequence 𝑎0 → 𝑎1 → ⋯ is cofinal in 𝒜 if the set of elements in the
sequence is cofinal in𝒜.
def cofinal_reduction {N: ℕ∞} {f: ℕ → α} (hseq: reduction_seq r N f) む=

cofinal r hseq.elems
(iii) 𝒜 has the cofinality property (CP) if for every 𝑎 ∈ 𝛢, there exists a corresponding

reduction sequence 𝑎 = 𝑎0 → 𝑎1 → ⋯ which is cofinal in 𝒢(𝑎), the reduction graph
of 𝑎.
def cofinality_property む=

∀a, ∃N f, ∃(hseq: reduction_seq (A.reduction_graph a).ars.union_rel N f),
cofinal_reduction hseq ∧ hseq.start = a

(iv) 𝒜 has the componentwise cofinality property (CP≡) if for every 𝑎 ∈ 𝛢, there exists a
corresponding reduction sequence 𝑎 = 𝑎0 → 𝑎1 → ⋯ which is cofinal in 𝒞(𝑎), the
component of 𝑎.
def cofinality_property_conv む=

∀a, ∃N f, ∃(hseq: reduction_seq (A.component a).ars.union_rel N f),
cofinal_reduction hseq ∧ hseq.start = a

Note that the cofinality property is one of the few properties we define for an ARS instead
of a ‘raw’ reduction relation – this is necessary because it uses the notion of a sub-ARS that
we defined in Section 3.2.2.

5.1 Cofinality and confluence
Cofinality seems like a strange property, but it turns out to have an interesting connection to
confluence. It follows almost directly from the definition that an ARS which has the cofinal-
ity property must be confluent.

39

https://segfault.party/thesis-docs/find/?pattern=Thesis.cofinal#doc


Lemma 5.2 An ARS𝒜 = (𝛢,→) which has the cofinality property must be confluent.

lemma cr_of_cp:
cofinality_property A → confluent A.union_rel む= ㋽㍉㎕

Proof. Let 𝑎, 𝑏, 𝑐 ∈ 𝛢, and 𝑐 ↞ 𝑎 ↠ 𝑏. By the cofinality property, there is some reduction
sequence 𝑠0 → 𝑠1 → …which is cofinal in the reduction graph of 𝑎.

Since 𝑏 and 𝑐 are in the reduction graph of 𝑎, they reduce to elements 𝑠𝑏, 𝑠𝑐 in the cofinal
reduction sequence. Without loss of generality, we take 𝑠𝑏 ↠ 𝑠𝑐. Then, our common reduct
is 𝑠𝑐: we have 𝑎 ↠ 𝑏 ↠ 𝑠𝑏 ↠ 𝑠𝑐 and 𝑎 ↠ 𝑐 ↠ 𝑠𝑐.

Surprisingly, the converse holds as well, as long as our ARS is countable – that is, there is
an injective map𝛢 → ℕ, or equivalently a surjective mapℕ → 𝛢. In Lean, we model this
by saying our type α satisfies Countable.

Lemma 5.3 ([6, p. 51]). Any countable, confluent ARS has the cofinality property.

lemma cp_of_countable_cr [cnt: Countable α] (cr: confluent A.union_rel):
cofinality_property A む= ㋽㍉㎕

We have formalized the proof that is given in [6, p. 51].

Proof. Let𝒜 = (𝛢,→) be an ARS. Assume𝒜 is confluent. Assume𝛢 is countable.
Fix 𝑎 ∈ 𝛢. We must show that there exists a reduction sequence 𝑎 = 𝑏0 → 𝑏1 → ⋯which

is cofinal in 𝒢(𝑎).
𝒢(𝑎) contains 𝑎, so it is nonempty. Since𝛢 is countable, there exists a function 𝑓∶ ℕ →

𝒢(𝑎)which is surjective. Consider 𝑓 as a sequence. Every element in the sequence is a reduct
of 𝑎, but they are not necessarily reducts of one another. However, we can use 𝑓 to build a
new sequence 𝑔:

𝑔(0) = 𝑎,
𝑔(𝑛 + 1) = the common reduct of 𝑔(𝑛) and 𝑓(𝑛).

Every element in the codomain of both 𝑓 and 𝑔 is a reduct of 𝑎. Hence, a common reduct
of 𝑓(𝑖) and 𝑔(𝑗) always exists, by confluence of𝒜.

Note that 𝑔(𝑛) forms a reduction sequence w.r.t. ↠. That is,

𝑔(0) ↠ 𝑔(1) ↠ 𝑔(2) ↠ ⋯

We can expand this reduction sequence into a reduction sequence w.r.t. →,

𝑔(0) → ⋯ → 𝑔(1) → ⋯ → 𝑔(2) → ⋯

Wewish to show that this sequence is cofinal in 𝒢(𝑎). Assume 𝑏 ∈ 𝒢(𝑎). Since 𝑓 is surjec-
tive, there must be an 𝑖 s.t. 𝑓(𝑖) = 𝑏. Then 𝑔(𝑖 + 1) is a reduct of 𝑏.
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5.1.1 Expansion of reduction sequences

The proof sketch above is relatively easy to formalize, save for one noteworthy detail: the step
where 𝑔 is expanded into a reduction sequence w.r.t. →. This step is only mentioned very
briefly in the original proof in [6], perhaps because Klop considered it obvious that such an
expansion is possible.

For finite reduction sequences, we can easily prove this; our inductive definition is again
well-suited to such a proof (ReductionSeq.flatten). It is easy to convince oneself that this
also extends to the infinite case, but formalizing this turns out to be quite involved. We will
look at the core parts of our Lean formalization, including some key definitions. The formal-
ization of this expansion is due in part to Edward van de Meent and Daniel Weber on the
Lean Zulip [5].

Our eventual goal is to prove that any reflexive-transitive reduction sequence 𝑎0 ↠ 𝑎1 ↠
𝑎2 ↠ ⋯ can be expanded to a reduction sequence 𝑎0 → ⋯ → 𝑎1 → ⋯ → 𝑎2 → ⋯. We
will begin by proving a similar property for transitive reduction sequences, which is simpler
because we have the guarantee that there are no ‘empty’ steps.

Lemma 5.4 Any transitive step 𝑎 →+ 𝑏 can be expanded into a list of elements [𝑎, … , 𝑏]
such that for any two adjacent elements 𝑥, 𝑦, we have 𝑥 → 𝑦.

lemma trans_chain {a b}:
r⁺ a b → ∃l, l.getLast? = some b ∧ List.Chain r a l む= ㋽㍉㎕

Proof. By structural induction on the transitive step.

Our formalized lemma makes use of List.Chain: a list a㌐㍘l satisfying List.Chain r a l
starts with a, and links each subsequent element via r.

In order to prove various other properties of these lists, wewish to have a function trans_chain'
{a b}: r⁺ a b → List α which satisfies (trans_chain' hstep).getLast? = some b and
List.Chain r a (trans_chain' hstep), i.e. the property given by trans_chain. Unfortu-
nately, we cannot compute such a list, but since we know one must exist, we can still define
such a function as long as we mark it noncomputable. To do so, we use the function Classi-
cal.choose, which is derived from the type-theoretic axiom of choice.

Definition 5.5 If we have a reduction step ℎ ∶ 𝑎 →+ 𝑏, Classical.choose (trans_chain
h) is a list of elements [… , 𝑏] such that for any two adjacent elements 𝑥, 𝑦, we have 𝑥 → 𝑦.

noncomputable def trans_chain' {a b}: r⁺ a b → List α む=
fun h ↦ Classical.choose (trans_chain h)

Note that trans_chain' returns the list without the element 𝑎; this is convenient because
we will want to concatenate multiple lists corresponding to a sequence 𝑎 →+ 𝑏 →+ 𝑐 →+

…, and the last element of the first step coincides with the first element of the second step,
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et cetera. In order to not contain these boundary elements twice, we always omit the first
element of a step, and we prepend 𝑎 later in the process.

The proof that trans_chain' satisfies the property of l in trans_chain is given by Classi-
cal.choose_spec, which has the type (h: ∃x, p x) → p (Classical.choose h). Using this
definition, we can for instance prove that such a list is always nonempty:

lemma trans_chain'.nonempty {a b} (h: r⁺ a b):
trans_chain' h ≠ [] む= ㋵㌽㎅

We can also use trans_chain' to define a sequence of lists satisfying the chain property.

Definition 5.6 A transitive reduction sequence 𝑎0 →+ 𝑎1 →+ ⋯ can be transformed
into a sequence of lists [[… , 𝑎1], [… , 𝑎2], …], by applying trans_chain' to each step.

lemma reduction_seq.inf_step (hseq: reduction_seq r ⊤ f) (n: ℕ):
r (f n) (f (n + 1)) む= ㋵㌽㎅

noncomputable def inf_trans_lists (f: ℕ → α) (hf: reduction_seq r⁺ ⊤ f): ℕ → List α
| n 㟆㢬 trans_chain' (hf.inf_step n)

We now define an auxiliary function aux, which allows us to get an element from such a
sequence of lists using a pair of indices (list_idx, elem_idx).

Definition 5.7 The auxiliary function aux takes a sequence of lists, a proof that all lists
are nonempty, a list index 𝑛 and an element index 𝑚, and returns the 𝑚th element, starting
at the 𝑛th list.

variable (l_seq: ℕ → List α) (hne: ∀n, (l_seq n) ≠ [])

noncomputable def aux (list_idx: ℕ) (elem_idx: ℕ) : α む=
if h: elem_idx < (l_seq list_idx).length then
(l_seq list_idx)[elem_idx]

else
have: elem_idx - (l_seq list_idx).length < elem_idx む= by
have む= List.length_pos.mpr (hne list_idx)
omega

aux (list_idx + 1) (elem_idx - (l_seq list_idx).length)

Note that elem_idx may be larger than the list referred to by list_idx; in that case, the in-
dex ‘rolls over’ to the next list. This function is defined recursively; to prove that the function
is terminating, we use the fact that each list in the sequence is nonempty (hne), and therefore
elem_idx is decreasing. This is one reason we limit ourselves to transitive reduction sequences
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here – an equivalent definition for reflexive-transitive reduction sequences may have a poten-
tially infinite amount of empty lists, making aux non-terminating.

If hf: reduction_seq r⁺ ⊤ f, then our desired expanded sequence is 𝑓(0) followed by aux
(inf_trans_lists f hf) (inf_trans_lists.nonempty) 0 n. We show this as follows.

Lemma 5.8 The 𝑘th element starting from list𝑚 + 1 is reachable starting from list𝑚 by
adding some 𝑛 to 𝑘 (namely, the length of list𝑚).

lemma aux_skip (m k: ℕ):
∃n, aux l_seq hne m (k + n) = aux l_seq hne (m + 1) k む= ㋽㍉㎕

Proof. By definition of aux.

Lemma 5.9 We can get the 𝑘th element of list𝑚 + 𝑖 by getting the 𝑘 + 𝑛th element of list
𝑚, where 𝑛 is the length of the intermediate lists.

lemma aux_skip_i (i m k: ℕ):
∃n, aux l_seq hne m (k + n) = aux l_seq hne (m + i) k む= ㋽㍉㎕

Proof. By induction on 𝑖, along with Lemma 5.8.

Lemma 5.10 Let f: ℕ → α and hf: reduction_seq r⁺ ⊤ f be an infinite transitive
reduction sequence. Each element f n for 𝑛 > 0 appears as an element in the sequence generated
by aux using inf_trans_lists, starting at the (𝑛 − 1)th list.

lemma aux_elem' (f: ℕ → α) (hf: reduction_seq r⁺ ⊤ f) (n) (hn: n > 0):
let ls む= inf_trans_lists f hf
f n = aux ls inf_trans_lists.nonempty (n - 1) ((ls (n - 1)).length - 1) む= ㋽㍉㎕

Proof. By definition of inf_trans_lists and trans_chain', the (𝑛 − 1)th list is the list con-
taining the elements [… , 𝑎𝑛]. 𝑎𝑛 is the last element of this list.

Lemma 5.11 Let f: ℕ → α and hf: reduction_seq r⁺ ⊤ f be an infinite transitive
reduction sequence. Each element f n for 𝑛 > 0 appears in the sequence generated by aux using
inf_trans_lists, starting at the first list.

lemma aux_elem (f: ℕ → α) (hf: reduction_seq r⁺ ⊤ f) (n: ℕ) (hn: n > 0):
∃n', f n = aux (inf_trans_lists f hf) inf_trans_lists.nonempty 0 n' む= ㋽㍉㎕

Proof. By Lemmas 5.9 and 5.10.
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Lemma 5.12 Let f: ℕ → α and hf: reduction_seq r⁺ ⊤ f be an infinite transitive reduc-
tion sequence. For all list indices list_idx, aux (inf_trans_lists f hf) inf_trans_lists.nonempty
list_idx is an infinite reduction sequence with respect to r.

lemma aux_inf_reduction_seq (f hf) (list_idx: ℕ):
reduction_seq r ⊤ (aux (inf_trans_lists f hf) (inf_trans_lists.nonempty) list_idx)

む= ㋽㍉㎕

Proof. Fix 𝑖 and 𝑗. We wish to show r (aux _ _ i j) (aux _ _ i (j + 1)).
We proceed by functional induction on i and j using aux’s induction principle. This in-

duction principle is automatically generated by Lean; essentially, it works by following the
structure of a recursive function, which forms a valid induction principle because it is termi-
nating. We get the following cases:

Case 1: j < (inf_trans_lists f hf i).length:
Let’s say 𝑙𝑖 is the 𝑖th list generated by inf_trans_lists f hf, and 𝑙𝑖+1 the (𝑖 + 1)th. Since

𝑗 is smaller than the length of the 𝑖th list, aux _ _ i j reduces to 𝑙𝑖[𝑗]. Now, we distinguish
the case where 𝑗 + 1 is smaller than the length of 𝑙𝑖 from the case where 𝑗 + 1 is greater than
the length of 𝑙𝑖.

If 𝑗 + 1 is smaller than the length of 𝑙𝑖, then aux _ _ i (j + 1) reduces to 𝑙𝑖[𝑗 + 1].
By definition of inf_trans_lists, adjacent elements within 𝑙𝑖 are linked by →, so we have
𝑙𝑖[𝑗] → 𝑙𝑖[𝑗 + 1], as required.

If 𝑗 + 1 is larger than the length of 𝑙𝑖, then 𝑙𝑖[𝑗]must be the last element of 𝑙𝑖. Then aux _
_ i (j + 1) reduces to 𝑙𝑖+1[0]. By definition of 𝑙𝑖, we have 𝑙𝑖[𝑗] = 𝑓(𝑖+1), and by definition
of 𝑙𝑖+1, we have List.Chain (f (i + 1)) (inf_trans_lists f hf (i + 1)). Then we have
𝑙𝑖[𝑗] → 𝑙𝑖+1[0], as required.
Case 2: j ≥ (inf_trans_lists f hf i).length:

In this case, we get an induction hypothesis ih:
ih: r (aux _ _ (i + 1) (j - (inf_trans_lists f hf i).length))

(aux _ _ (i + 1) (j - (inf_trans_lists f hf i).length + 1))
Again, we wish to show that r (aux _ _ i j) (aux _ _ i (j + 1)). Since 𝑗 is greater than
the length of 𝑙𝑖, we know aux _ _ i j = aux _ _ (i + 1) (j - (inf_trans_lists f hf
i).length). If 𝑗 is greater than the length of 𝑙𝑖, then so is 𝑗 + 1, and we have aux _ _ i (j +
1) = aux _ _ (i + 1) (j - (inf_trans_lists f hf i) + 1). Then our goal is exactly equal
to our induction hypothesis.

Definition 5.13 Let f: ℕ → α and hf: reduction_seq r⁺ ⊤ f be an infinite transitive
reduction sequence. We define the expanded version of f as follows:

noncomputable def seq: ℕ → α
| 0 㟆㢬 f 0
| n + 1 㟆㢬 aux (inf_trans_lists f hf) inf_trans_lists.nonempty 0 n
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Lemma 5.14 For any f: ℕ → α with hf: reduction_seq r⁺ ⊤ f, seq f hf contains every
element in f.

lemma seq_contains_elems (f hf):
∀n, ∃m, f n = seq f hf m む= ㋽㍉㎕

Proof. Fix an index 𝑛. If 𝑛 = 0, we have f n = f 0 = seq f hf 0. If 𝑛 > 0, then by
Lemma 5.11, we have f n = aux _ _ 0 n' = seq f hf (n' + 1) for some 𝑛′.

Lemma 5.15 For any f, hf, seq f hf forms an infinite reduction sequence with respect to
r.

lemma seq_inf_reduction_seq (f hf):
reduction_seq r ⊤ (seq f hf) む= ㋽㍉㎕

Proof. We only need to prove that f 0 and aux _ _ 0 0 are linked by →; the rest follows
from Lemma 5.12. Note that aux _ _ 0 0 = (inf_trans_lists f hf 0)[0] = (trans_chain'
(hf.inf_step 0))[0], where hf.inf_step 0: r⁺ (f 0) (f 1). By definition of trans_chain',
we have List.Chain r (f 0) (trans_chain' (hf.inf_step 0)), so in particular r (f 0)
(trans_chain' (hf.inf_step 0))[0], as required.

This leads us to our main expansion theorem:

Theorem 5.16 Any infinite transitive reduction sequence 𝑎0 →+ 𝑎1 →+ ⋯ has an ex-
panded counterpart 𝑎0 → ⋯ → 𝑎1 → ⋯ which contains all 𝑎𝑛 and starts with 𝑎0.

lemma exists_regular_of_trans (f: ℕ → α) (hf: reduction_seq r⁺ ⊤ f):
∃f', reduction_seq r ⊤ f' ∧ (∀n, ∃m, f n = f' m) ∧ f 0 = f' 0 む= ㋽㍉㎕

Proof. Let f' む= seq f hf. Immediate fromDefinition 5.13 and Lemmas 5.14 and 5.15.

5.1.2 Extending the expansion to reflexive-transitive reduction sequences

In order to extend our expansion proof to reflexive-transitive reduction sequences, we define
two flavors of infinite reduction sequences:

Definition 5.17 (Infinite reduction sequences).

(i) We call an infinite reduction sequence degenerate if, from some point onward, it only
contains steps from one element to itself.

def reduction_seq.degenerate {f} (hseq: reduction_seq r ⊤ f) む=
∃n, ∀m ≥ n, f m = f (m + 1)
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(ii) We say an infinite reflexive-transitive reduction sequence has the transitive step guaran-
tee if, at any point in the sequence, there is a guaranteed next transitive step.

def transitive_step_guarantee {f} (hseq: reduction_seq r ⊤ f) む=
∀n, ∃m ≥ n, f m ≠ f (m + 1) ∧ (∀m' ∈ Set.Icc n m, f n = f m')

Lemma 5.18 If an infinite reflexive-transitive reduction sequence (𝑠𝑛) is degenerate, there
is a finite reflexive-transitive reduction sequence (𝑠′𝑛) which contains all elements of (𝑠𝑛), and
starts with 𝑠0.

lemma finite_of_degenerate (f: ℕ → α) (hf: reduction_seq r∗ ⊤ f) (hdg: hf.degenerate):
∃N: ℕ, ∃f', reduction_seq r∗ N f' ∧ (∀n, ∃m ≤ N, f' m = f n) ∧ f' 0 = f 0 む= ㋽㍉㎕

Proof. Let’s say (𝑠𝑛) is degenerate, with 𝑠𝑚 = 𝑠𝑚+1 = 𝑠𝑚+2 = ⋯. Then the sequence 𝑠0 ↠
𝑠1 ↠ ⋯ ↠ 𝑠𝑚 contains all elements of (𝑠𝑛), and starts with 𝑠0.

Given Lemma 5.18, we can expand a degenerate sequence simply by transforming it into a
finite sequence and using ReductionSeq.flatten.

Lemma 5.19 If a reflexive-transitive reduction sequence (𝑠𝑛) is not degenerate, it has the
transitive step guarantee.

lemma tsg_of_not_degenerate {f} (hseq: reduction_seq r∗ ⊤ f) (hndeg: ¬hseq.degenerate):
transitive_step_guarantee hseq む= ㋽㍉㎕

Proof. Assume (𝑠𝑛) is not degenerate, and let 𝑛 ∈ ℕ. Let 𝑆 = {𝑚 ∣ 𝑚 ≥ 𝑛 ∧ 𝑠𝑚 ≠ 𝑠𝑚+1}.
Since (𝑠𝑛) is not degenerate, 𝑆 is nonempty. Since (ℕ, <) is well-founded, there must be a
minimal𝑚 such that𝑚 ≥ 𝑛 ∧ 𝑠𝑚 ≠ 𝑠𝑚+1, call it𝑚∗.

We must show that, for all elements𝑚′ between 𝑛 and𝑚∗, 𝑠𝑛 = 𝑠′𝑚. We proceed by contra-
diction. Let𝑚′ be between 𝑛 and𝑚∗, and assume 𝑠𝑛 ≠ 𝑠′𝑚. Since𝑚∗ is minimal, any𝑚 such
that 𝑛 ≤ 𝑚 < 𝑚∗ must have 𝑠𝑚 = 𝑠𝑚+1. But then 𝑠𝑛 = 𝑠𝑛+1 = … = 𝑠′𝑚, contradicting our
assumption.

Definition 5.20 Let (𝑠𝑛) be an infinite reflexive-transitive reduction sequence which sat-
isfies the transitive step guarantee. Then we can define a derived sequence (𝑠+𝑛 ) as follows:

𝑠+0 = 𝑠0
𝑠+𝑖+1 = the end of the next transitive step after 𝑠+𝑖

Essentially, we view (𝑠𝑛) as a sequence containing both reflexive and transitive steps, e.g.

𝑠0 →+ 𝑠1 →= 𝑠2 →= 𝑠3 →+ 𝑠4 →= ⋯

Wewish to pick out only 𝑠0 along with each end of a transitive step, in this example 𝑠1 and 𝑠4.
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variable {f: ℕ → α} (hf: reduction_seq r∗ ⊤ f) (htsg: transitive_step_guarantee hf)

/-- From some index `n` we step to a next index `choose (htsg n) + 1`,
which is the end of a transitive step. -/

noncomputable def trans_idx_step (n: ℕ): ℕ む=
choose (htsg n) + 1

/-- By iterating `trans_idx_step` starting at index `0`, we can generate a sequence
of indices into `f` which represent all transitive steps in `f`. -/

noncomputable def trans_idxs (n: ℕ): ℕ む=
(trans_idx_step hf htsg)^[n] 0

/-- Applying `f` after `trans_idxs` yields the sequence. -/
noncomputable def trans_seq (n: ℕ): α む=

f (trans_idxs hf htsg n)

Lemma 5.21 If an infinite reflexive-transitive reduction sequence (𝑠𝑛) is not degenerate,
there exists an infinite transitive reduction sequence (𝑠+𝑛 ) which contains all elements of (𝑠𝑛),
and starts with 𝑠0.

lemma exists_inf_regular_seq_of_not_degenerate (hnd: ¬hf.degenerate):
∃f', reduction_seq r ⊤ f' ∧ (∀n, ∃m, f n = f' m) ∧ f 0 = f' 0 む= ㋽㍉㎕

To keep this section somewhat brief in contrast to the previous section, we provide only a
proof sketch here.

Proof sketch. By Lemma 5.19, (𝑠𝑛) has the transitive step guarantee. Then (𝑠+𝑛 ) is the sequence
we’re looking for.

We wish to show that (𝑠+𝑛 ) is an infinite reduction sequence with respect to→+. Hence,
we wish to show that 𝑠+𝑖 →+ 𝑠+𝑖+1 for all 𝑖.

If we visualize the original sequence (𝑠𝑛) and the derived sequence (𝑠+𝑛 ) around 𝑠+𝑖 , it looks
like this:

⋯ →= 𝑠𝑗−1 →+ 𝑠𝑗 = 𝑠+𝑖 →= ⋯ →= 𝑠𝑘 →+ 𝑠𝑘+1 = 𝑠+𝑖+1 →= ⋯
Since all steps between 𝑠+𝑖 and 𝑠𝑘 are reflexive, we have 𝑠+𝑖 = 𝑠𝑘, and thus 𝑠+𝑖 →+ 𝑠+𝑖+1, as
required.

By definition, we have 𝑠+0 = 𝑠0. To show that every element of (𝑠𝑛) appears in (𝑠+𝑛 ), we need
some more complicated reasoning. Note that any element of (𝑠𝑛) which is between two con-
secutive elements 𝑠+𝑘 , 𝑠+𝑘+1 must equal 𝑠+𝑘 by the reasoning above. To prove that every element
appears in (𝑠+𝑛 ), then, it suffices to show that every element 𝑠𝑖 is between two consecutive ele-
ments 𝑠+𝑘 , 𝑠+𝑘+1.
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Note that, with every step, our index in the original sequence increases by at least one.
Then the indices in our original sequence tend to infinity, and for every element 𝑠𝑖, there
must be an element in (𝑠+𝑛 )which comes after it.

Take the first element of (𝑠+𝑛 ) which comes after 𝑠𝑖, call it 𝑠+𝑘′ . We cannot have 𝑘′ = 0,
because the first element of (𝑠+𝑛 ) is 𝑠0, which cannot come after 𝑠𝑖. Then we must have 𝑘′ =
𝑘 + 1 for some 𝑘. The element 𝑠+𝑘 must come before 𝑠𝑖, otherwise 𝑘′ is not minimal. Then
every element 𝑠𝑖 is between two consecutive elements 𝑠+𝑘 , 𝑠+𝑘+1.
Theorem 5.22 Every infinite reflexive-transitive reduction sequence 𝑎0 ↠ 𝑎1 ↠ ⋯ has
an expanded counterpart 𝑎0 → ⋯ → 𝑎1 → ⋯ which contains all 𝑎𝑛 and starts with 𝑎0.

lemma regular_seq_of_rt_seq (f: ℕ → α) (hf: reduction_seq r∗ ⊤ f):
∃N f', reduction_seq r N f' ∧ (∀n, ∃(m: ℕ) (_: m < N + 1), f n = f' m) ∧

f 0 = f' 0 む= ㋽㍉㎕

Proof. Immediate from Lemmas 5.18 and 5.21 and ReductionSeq.flatten.

Although this result is barely considered in Klop’s proof in [6], it has taken nearly 600
lines of Lean, and six pages of text, to rigorously formalize. The entire formalization takes up
around 3000 lines of Lean, so this is quite a significant part of it. In general, we have found
that the core arguments of the proofs are usually easy to translate, but there is occasionally a
very small step that turns out to be exceedingly difficult.

5.2 Equivalence of componentwise definition
It turns out the componentwise and reduction-graph versions of the cofinality property are
equivalent.

Lemma 5.23 Let 𝒜 = (𝛢,→) be an ARS. The regular and componentwise cofinality
property are equivalent.

lemma cp_iff_cp_conv:
cofinality_property A ↔ cofinality_property_conv A む= ㋽㍉㎕

Proof. We look at the forward and backward case separately.

Forward case: CP⇒ CP≡

Assume𝒜 is CP. Let 𝑎 ∈ 𝛢, and assume (𝑠𝑛) is a reduction sequence which is cofinal in
the reduction graph of 𝑎. We will show that this sequence is cofinal in the component of 𝑎.

Let 𝑏 be an element in the component of 𝑎, that is, 𝑎 ≡ 𝑏. By Lemma 5.2,𝒜 is confluent.
By Lemma 3.19, 𝒜 is also conversion confluent. Then, by conversion confluence, 𝑎 and 𝑏
have a common reduct, 𝑐. 𝑐 is in the reduction graph of 𝑎, and so has a reduct in (𝑠𝑛). Then 𝑏
has a reduct in (𝑠𝑛), and (𝑠𝑛) is also cofinal in the component of 𝑎. Hence,𝒜 is CP≡.
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Backward case: CP≡⇒ CP
Assume𝒜 is CP≡. Let 𝑎 ∈ 𝛢, and assume (𝑠𝑛) is a reduction sequence which is cofinal in

the component of 𝑎. Let 𝑏 be in the reduction graph of 𝑎. Then, 𝑏 is also in the component
of 𝑎, as↠ ⊆ ≡. Then 𝑏 has a reduct in (𝑠𝑛), and𝒜 is CP.

We will use the component version of the cofinality property in our proofs of CP ⇒
DCR and CP ⇒ DCR2, later.
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6 Decreasing diagrams
We have already discussed one confluence criterion, namely Newman’s Lemma, in Section 4.
In this section, we discuss another: Decreasing Diagrams [15].

Definition 6.1 (Decreasing diagrams).

(i) For an ARS𝒜 = (𝛢, {→𝑖 | 𝑖 ∈ 𝛪 }) and a relation < ⊆ 𝛪 × 𝛪, we define

→<𝑖 = ⋃
𝑗<𝑖

→𝑗

Additionally, we use→<𝑖∪<𝑗 as shorthand for→<𝑖 ∪ →<𝑗.
(ii) Let 𝒜 = (𝛢,→) be an ARS. In order to prove that 𝒜 is confluent by decreasing

diagrams, we must label the steps in𝒜 using a label set 𝛪 that has a well-founded order
<, and show that this labeled rewriting system is locally decreasing – that is, any two
diverging steps 𝑐 ←𝛼 𝑎 →𝛽 𝑏 can always be joined again by reduction sequences as
shown in Fig. 7.
If a rewriting system can be labeled in this way, we say it is decreasing Church-Rosser
(DCR).

𝑎 𝑏

𝑐 𝑑

𝛼

𝛽

< 𝛼

𝛽=

< 𝛼 ∪ < 𝛽

< 𝛽 𝛼
=

< 𝛼 ∪ < 𝛽

Figure 7: A decreasing elementary diagram.

It is shown in [15] that any rewriting system that is DCR is confluent. Essentially, we
can see decreasing diagrams as a version of Newman’s Lemma which lifts the requirement of
strong normalization from the relation on elements to the relation on labels.
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Decreasing diagrams is a complete method for proving confluence of countable systems.
We might think that the power of decreasing diagrams lies in the potential complexity of the
labeling – we can have as many labels as we like, with some complex well-founded order on
them. However, this is not the case for countable systems: Endrullis, Klop, and Overbeek
proved in [3] that 2-label DCR is a complete method for proving confluence of countable
systems. In this section, we will discuss how we have formalized these completeness results in
Lean.

6.1 Decreasing Diagrams in Lean
We begin by defining the union of reduction relations as in Definition 6.1(i).

/-- The union of reduction relations with an index smaller than i. -/
@[simp]
def ARS.union_lt [LT I] (A: ARS α I): I → Rel α α む=

fun i x y ↦ ∃j, j < i ∧ A.rel j x y

/-- Enable the syntax `r ∪ s` for the union of two relations r, s. -/
instance Rel.instUnion: Union (Rel α β) where

union む= fun r₁ r₂ x y ↦ (r₁ x y) ∨ (r₂ x y)

We can then define the notion of a locally decreasing ARS as follows:

def locally_decreasing [LT I] [WellFoundedLT I] (B: ARS α I) む=
∀a b c i j, B.rel i a b ∧ B.rel j a c →
∃d, ((B.union_lt i)∗ • (B.rel j)⁼ • (B.union_lt i ∪ B.union_lt j)∗) b d ∧

((B.union_lt j)∗ • (B.rel i)⁼ • (B.union_lt i ∪ B.union_lt j)∗) c d

The large center dots • represent relation composition (𝑥(𝑅 • 𝑆)𝑧 ⇔ ∃𝑦, 𝑥𝑅𝑦𝑆𝑧); these
are used to keep the intermediate elements unnamed, just as in Fig. 7.

Finally, an ARS is DCR if there exists a reduction-equivalent ARS which is locally decreas-
ing. This reduction-equivalent ARS is the ‘labeled’ version of our original ARS.

def DCR (A: ARS α I) む=
∃(J: Type) (_: LT J) (_: WellFoundedLT J) (B: ARS α J),
A.union_rel = B.union_rel ∧ locally_decreasing B

Although the definition of DCR is generic over the index type, we will generally use the
natural numbers or a subset of them as indices, and use the standard less-than relation as
our well-founded relation on ℕ. In order to represent the property of being 𝑛-label DCR,
that is, having a reduction-equivalent, locally decreasing ARS which uses at most 𝑛 labels, we
separately define DCRn:
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def DCRn (n: ℕ) (A: ARS α I) む=
∃(B: ARS α (Fin n)), A.union_rel = B.union_rel ∧ locally_decreasing B

We use the type containing exactly 𝑛 inhabitants, Fin n, as our index type here – this type is
isomorphic to {𝑚 ∈ ℕ ∣ 𝑚 < 𝑛}. It is trivial to prove that any ARS that is DCR𝑛 for any 𝑛
must be DCR.

6.2 Completeness of DCR for countable systems
Lemma 5.3 tells us that any countable, confluent system has the cofinality property. Then,
in order to prove that DCR is complete for countable systems, it suffices to prove that any
system that has the cofinality property is DCR. Our formalization follows the proof in [13,
p. 766]. We will first consider some prerequisites.

6.2.1 Prerequisites

Wewill assume the following variables exist in the subsequent Lean snippets.

variable {r: Rel α α} {N: ℕ∞} {f: ℕ → α} (hseq: reduction_seq r N f)

Definition 6.2 (Rewrite distance). Let𝒜 = (𝛢,→) be an ARS.

(i) The rewrite distance between an element 𝑎 ∈ 𝛢 and one of its reducts 𝑏 ∈ 𝒢(𝑎),
written 𝑑(𝑎, 𝑏), is the minimal length of a rewrite sequence between 𝑎 and 𝑏.

(ii) The rewrite distance between an element 𝑎 and a set of elements 𝛸 ⊆ 𝛢 where 𝛸 ∩
𝒢(𝑎) is non-empty, written 𝑑𝛸(𝑎, 𝛸), is the minimal length of a rewrite sequence be-
tween 𝑎 and some element 𝑥 ∈ 𝛸, i.e. 𝑑𝛸(𝑎, 𝛸) = min{ 𝑑(𝑎, 𝑥) ∣ 𝑥 ∈ 𝛸 ∩ 𝒢(𝑎) }.

def is_reduction_seq_from (r: Rel α α) (a b: α) (f: ℕ → α) (N: ℕ) む=
f 0 = a ∧ f N = b ∧ reduction_seq r N f

lemma exists_reduction_seq_in_set {a} (X: Set α) (hX: ∃x ∈ X, r∗ a x):
∃N f x, x ∈ X ∧ is_reduction_seq_from r a x f N む= ㋵㌽㎅

open Classical in
noncomputable def dX (a: α) (X: Set α) (hX: ∃x ∈ X, r∗ a x)

む= Nat.findX (exists_reduction_seq_in_set X hX)

Instead of basing 𝑑𝛸 on 𝑑, we define it directly, choosing instead to define 𝑑(𝑎, 𝑏) as
𝑑𝛸(𝑎, {𝑏}). Before defining 𝑑𝛸, we first define the property of being a length-𝛮 reduction
sequence from 𝑎 to 𝑏 (is_reduction_seq_from). Then, we prove that, as long as there is an ele-
ment of𝛸which is a reduct of 𝑎, there is some𝛮 such that there exists a reduction sequence
from 𝑎 to an element in𝛸with length𝛮.
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Our definition of 𝑑𝛸 uses the function Nat.findX, which, given a proof that there is some
natural number satisfying a predicate p, returns the smallest element of { n: ℕ ㌦㍮ p n ∧ ∀m <
n, ¬p m }. This is essentially a convenience function which makes use of the fact that (ℕ, <)
is well-founded, and therefore has a minimum on every non-empty set, in particular the set
whose elements satisfy p. You will notice we need to mark this definition as noncomputable,
as well as open the Classical namespace. If a predicate is decidable, Nat.findX is able to com-
pute the smallest natural number satisfying it – since this predicate is not, we need to mark
the definition as noncomputable and open Classical, which makes all predicates (noncom-
putably) decidable via Classical.propDecidable.

The distance can be characterised by a few lemmas:

Lemma 6.3 If, for an element 𝑎 ∈ 𝐶 and 𝑥 ∈ 𝛸, there is a reduction sequence 𝑠 ∶ 𝑎 →
⋯ → 𝑥, then the distance from 𝑎 to𝛸 is at most the length of 𝑠.

lemma dX_step_le (a x: α) {X: Set α} (hx: x ∈ X)
(hX: ∃x ∈ X, r∗ a x) {f: ℕ → α} {n}
(hrel: is_reduction_seq_from r a x f n):
dX a X hX ≤ n む= ㋽㍉㎕

Proof. Trivial fromminimality of the distance.

Lemma 6.4 If an element 𝑎 has a distance 𝑛 + 1 from a set 𝛸, and 𝑎 → 𝑏, then the
distance from 𝑏 to𝛸must be at least 𝑛.

lemma dX_step_ge
(a b: α) {X: Set α}
(ha: ∃x ∈ X, r∗ a x) (hb: ∃x ∈ X, r∗ b x)
(hrel: r a b) {n: ℕ} (hdX: dX a X ha = n + 1):
dX b X hb ≥ n む= ㋽㍉㎕

Proof. If not, there is a path from 𝑎 to𝛸 via 𝑏which is shorter than 𝑛 + 1 steps.

Definition 6.5 (Main road).

(i) A reduction sequence is acyclic if any two elements that are equal have the same index.

def reduction_seq.acyclic (_: reduction_seq r N f) む=
∀(n m: ℕ), n < N → m < N → f n = f m → n = m

(ii) Let𝒜 = (𝛢,→) be an ARS. We say a component𝐶 of𝒜 has amain road if it has an
acyclic reduction sequence𝛭 ∶ 𝑚0 → 𝑚1 → ⋯which is cofinal in𝐶.
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We wish to show that any ARS with the cofinality property has components that have a
main road. To do so, we will show that any cofinal reduction sequence that contains cycles
can be modified to remove the cycles. In many ways, this argument is similar to the expan-
sion of reduction sequences as addressed in Lemma 5.4: it is easy to convince oneself that
any cofinal reduction sequence which contains cycles can be modified to remove the cycles,
but a formal proof is somewhat involved; and there are similarities in the proof techniques.

Lemma 6.6 Let (𝑐𝑛) be a reduction sequence which is cofinal in𝒜 = (𝛢,→), and let 𝑐∗ be
an element which appears after all other elements in the sequence. Then 𝑐∗ on its own forms an
acyclic reduction sequence which is cofinal in𝒜.

lemma acyclic_of_succeeds (hcf: cofinal_reduction hseq)
(a: α) (ha: ∀(n: ℕ), n < N + 1 → ∃m ≥ n, m < N + 1 ∧ f m = a):
∃N' f', ∃(hseq': reduction_seq r N' f'),
cofinal_reduction hseq' ∧ hseq'.acyclic む= ㋽㍉㎕

Proof. Let 𝑎 ∈ 𝛢. Since (𝑐𝑛) is cofinal in𝒜, 𝑎 reduces to some 𝑐𝑖. By assumption, 𝑐∗ appears
after 𝑐𝑖, so 𝑐𝑖 ↠ 𝑐∗. Then, by transitivity, 𝑎 reduces to 𝑐∗. Then 𝑐∗ is cofinal in𝒜, and since it
consists of a single element, it is trivially acyclic.

We distinguish three different cases of cofinal reduction sequence: finite, infinite where
at least one element appears infinitely often, and infinite where all elements appear finitely
often. The first two cases have acyclic counterparts as corollaries of Lemma 6.6.

Corollary 6.7 Let (𝑐𝑛) be a finite reduction sequence which is cofinal in 𝒜 = (𝛢,→).
Then there exists an acyclic reduction sequence which is cofinal in𝒜.

lemma acyclic_of_finite
{N: ℕ} (hseq: reduction_seq r N f) (hcf: cofinal_reduction hseq):

∃N' f', ∃(hseq': reduction_seq r N' f'),
cofinal_reduction hseq' ∧ hseq'.acyclic む= ㋽㍉㎕

Proof. The last element in (𝑐𝑛) appears after all other elements in (𝑐𝑛).
Corollary 6.8 Let (𝑐𝑛) be an infinite reduction sequence which is cofinal in𝒜 = (𝛢,→),
with an element 𝑐∗ appearing infinitely often in (𝑐𝑛). Then there is an acyclic reduction se-
quence which is cofinal in𝒜.

lemma acyclic_of_appears_infinitely
(hinf: ∃n, appears_infinitely f n) (hcf: cofinal_reduction hseq):

∃N' f', ∃(hseq': reduction_seq r N' f'),
cofinal_reduction hseq' ∧ hseq'.acyclic む= ㋽㍉㎕

Proof. As 𝑐∗ appears infinitely often, it certainly appears after all other elements in (𝑐𝑛).
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These two cases are simple, in part because they result in an acyclic sequence which is fi-
nite. Things are more complicated in the last case, where every element only appears finitely
often in our infinite reduction sequence.

Lemma 6.9 Let (𝑐𝑛) be an infinite reduction sequence which is cofinal in 𝒜 = (𝛢,→),
with all elements appearing finitely often in (𝑐𝑛). Then there is an acyclic reduction sequence
which is cofinal in𝒜.

lemma acyclic_of_all_appear_finitely
(hninf: ¬∃n, appears_infinitely f n) (hcf: cofinal_reduction hseq):
∃f', ∃(hseq': reduction_seq r ⊤ f'),
cofinal_reduction hseq' ∧ hseq'.acyclic む= ㋽㍉㎕

Proof. If all elements appear finitely often in (𝑐𝑛), each element 𝑐𝑖 must have a greatest index
𝑔(𝑖) at which it appears; that is, 𝑔(𝑖) is the greatest index such that 𝑐𝑖 = 𝑐𝑔(𝑖). We can pick
indices of (𝑐𝑛) to construct an infinite sequence of indices (𝑖𝑛):

𝑖0 = 𝑔(0)
𝑖𝑛+1 = 𝑔(𝑖𝑛 + 1)

and define the sequence 𝑐′𝑛 = 𝑐𝑖𝑛 . We wish to prove that (𝑐′𝑛) is an acyclic reduction sequence
that is cofinal in𝒜.

To prove that (𝑐′𝑛) is cofinal in 𝒜, we must prove that any element in A reduces to some
element in (𝑐′𝑛). Obviously, 𝑔(𝑖) ≥ 𝑖. Then 𝑖𝑛+1 = 𝑔(𝑖𝑛 + 1) ≥ 𝑖𝑛 + 1 > 𝑖𝑛, and (𝑖𝑛) is strictly
monotone. Since (𝑖𝑛) is strictly monotone, for any 𝑐𝑖, (𝑐′𝑛) contains an element 𝑐𝑗 with 𝑗 >
𝑖. Then any element of (𝑐𝑛) must reduce to some element of (𝑐′𝑛), and by transitivity every
element 𝑎 ∈ 𝛢must reduce to some element of (𝑐′𝑛).

To show that (𝑐′𝑛) is a reduction sequence, note that 𝑐′𝑛 = 𝑐𝑖𝑛 and 𝑐
′
𝑛+1 = 𝑐𝑖𝑛+1 = 𝑐𝑔(𝑖𝑛+1) =

𝑐𝑖𝑛+1 by definition. Since (𝑐𝑛) is a reduction sequence, 𝑐𝑖𝑛 → 𝑐𝑖𝑛+1, and therefore 𝑐
′
𝑛 → 𝑐′𝑛+1.

Lastly, we wish to show that (𝑐′𝑛) is acyclic, i.e. for all 𝑛,𝑚 ∈ ℕ, if 𝑐′𝑛 = 𝑐′𝑚, then 𝑛 = 𝑚. If
𝑐′𝑛 = 𝑐′𝑚, then 𝑐𝑖𝑛 = 𝑐𝑖𝑚 . By definition, 𝑖𝑛 and 𝑖𝑚 are the greatest indices of their corresponding
elements in (𝑐𝑛). Then 𝑖𝑛 = 𝑖𝑚, for otherwise one index would not be the greatest. By strict
monotonicity of 𝑖, then, we must have 𝑛 = 𝑚.

Lemma 6.10 If there is a reduction sequence which is cofinal in𝒜, there is an acyclic reduc-
tion sequence which is cofinal in𝒜.

lemma cofinal_reduction_acyclic (hcf: cofinal_reduction hseq):
∃N' f', ∃(hseq': reduction_seq r N' f'),
cofinal_reduction hseq' ∧ hseq'.acyclic む= ㋽㍉㎕

Proof. Immediate from Corollaries 6.7 and 6.8 and Lemma 6.9.
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Lemma 6.11 Let𝒜 = (𝛢,→) be an ARS which has the cofinality property. Every compo-
nent of𝒜 contains a main road.

lemma exists_dcr_main_road (C: Component A) (hcp: cofinality_property A):
∃N f, ∃(hseq: reduction_seq C.ars.union_rel N f),
cofinal_reduction hseq ∧ hseq.acyclic む= ㋽㍉㎕

Proof. By Lemma 5.23,𝒜 has CP≡. By Definition 3.16, a component is necessarily nonempty,
so in particular must contain an element 𝑎. By CP≡, then, there is a reduction sequence
𝑎 = 𝑎0 → 𝑎1 → ⋯which is cofinal in 𝒞(𝑎).

By Lemma 6.10, there must be an acyclic reduction sequence which is cofinal in 𝒞(𝑎),
which is our desired main road.

6.2.2 Components having the cofinality property are DCR

As mentioned, in order to prove that DCR is a complete method for proving confluence
of countable systems, it suffices to show that any system that has the cofinality property is
DCR. Let 𝒜 = (𝛢,→) be an ARS which has the cofinality property. We will first show
that any component𝐶 of𝒜 is DCR.

We assume the following variable declarations are in scope in this section:

variable
{A: ARS α I} {C: Component A}
(hcp: cofinality_property_conv A)
{N: ℕ∞} {f: ℕ → C.Subtype}
(main_road: reduction_seq C.ars.union_rel N f)
{hacyclic: main_road.acyclic}
(hcr: cofinal_reduction main_road)

Definition 6.12 Let 𝐶 be a component of𝒜. By Lemma 6.11, 𝐶 contains a main road,
𝛭 ∶ 𝑚0 → 𝑚1 → ⋯. We define a derived ARS𝐶′ = (𝐶, {→𝑛 |𝑛 ∈ ℕ}) as follows:

(i) 𝑏 →0 𝑐 if 𝑏 → 𝑐 appears in𝛭, i.e. 𝑏 = 𝑚𝑖 and 𝑐 = 𝑚𝑖+1 for some 𝑖.
(ii) 𝑏 →𝑛+1 𝑐 if 𝑏 → 𝑐 and 𝑛 = 𝑑𝛸(𝑐,𝛭).

def C': ARS C.Subtype ℕ where
rel む= fun n b c ↦
match n with
| 0 㟆㢬 main_road.contains b c
| n + 1 㟆㢬 C.ars.union_rel b c ∧ n = dX c main_road.elems (hcr c)
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Lemma 6.13 𝐶′ is reduction-equivalent to𝐶, that is,→ = ⋃𝑛∈𝛮 →𝑛.

lemma C'.reduction_equivalent (b c: C.Subtype):
C.ars.union_rel b c ↔ (C' main_road hcr).union_rel b c む= ㋽㍉㎕

Proof. Let 𝑎, 𝑏 ∈ 𝐶, and assume 𝑎 → 𝑏. Certainly, 𝑏must have some distance to the main
road, call it 𝑛. Then we have 𝑎 →𝑛+1 𝑏 in𝐶′.

Alternatively, let 𝑎, 𝑏 ∈ 𝐶 and assume 𝑎 →𝑛 𝑏 for some 𝑛 ∈ ℕ. If 𝑛 = 0, 𝑎 and 𝑏 are on
the main road, and we have 𝑎 → 𝑏 by Definitions 3.13(iv) and 3.13(v). If 𝑛 > 0, we have
𝑎 → 𝑏 by definition of𝐶′.

Lemma 6.14 If the distance from 𝑏 to𝛸 is 𝑛, there is a reduction sequence from 𝑏 to some
𝑥 ∈ 𝛸 using only steps smaller than 𝑛 + 1.

lemma dX_imp_red_seq (n: ℕ) (b: C.Subtype):
dX b main_road.elems (hcr b) = n →
∃x f, x ∈ main_road.elems ∧ f 0 = b ∧ f n = x ∧
reduction_seq ((C' main_road hcr).union_lt (n + 1)) n f む= ㋽㍉㎕

Proof. By induction on the distance 𝑛, generalizing 𝑏.
Base case: 𝑛 = 0.

If the distance from 𝑏 to the main road is 0, there is a length-0 reduction sequence from 𝑏
to the main road. Since this reduction sequence is empty, it uses only steps smaller than 1.

Inductive step.

Our induction hypothesis is that all 𝑏 with distance to the main road 𝑛 have a reduction
sequence from 𝑏 to an element in the main road which uses only steps smaller than 𝑛 + 1.

Assume 𝑏 has distance 𝑛 + 1 to the main road. We must prove that there is a reduction
sequence from 𝑏 to the main road which uses only steps smaller than 𝑛 + 2.

Since the distance from 𝑏 to the main road is 𝑛+ 1, there is a reduction sequence of length
𝑛 + 1 to the main road: 𝑏 → 𝑏1 → ⋯ → 𝑚 ∈ 𝛭. By Lemmas 6.3 and 6.4, the distance
from 𝑏1 to the main road must be 𝑛. Then we have 𝑏 →𝑛+1 𝑏1 by definition of𝐶′.

By the induction hypothesis, there is a reduction sequence from 𝑏1 to 𝑚 ∈ 𝛭 which
uses only steps smaller than 𝑛 + 1. If we prepend the step 𝑏 →𝑛+1 𝑏1 to this sequence, we
have a reduction sequence from 𝑏 to 𝑚 ∈ 𝛭 which uses only steps smaller than 𝑛 + 2, as
required.
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Lemma 6.15 𝐶′ is locally decreasing.

lemma C'.is_ld:
locally_decreasing (C' main_road hcr) む= ㋽㍉㎕

Proof. Let 𝑎, 𝑏, 𝑐 ∈ 𝐶, and assume 𝑎 →𝑖 𝑏 and 𝑎 →𝑗 𝑐 for some 𝑖, 𝑗 ∈ ℕ. We must show
that 𝑏 and 𝑐 have a common reduct 𝑑 as shown in Fig. 7.

Without loss of generality, assume 𝑖 ≤ 𝑗. We will consider three disjoint cases:

Case 1: 𝑖 = 𝑗 = 0.
In this case, 𝑎, 𝑏, 𝑐 all lie on the main road by definition of 𝐶′. Since the main road is

acyclic, we must have 𝑏 = 𝑐. Take 𝑑 = 𝑏 = 𝑐; then there are empty steps from 𝑏 and 𝑐 to 𝑑, as
allowed by Fig. 7, and 𝑑 is our common reduct.

Case 2: 𝑖 = 0, 𝑗 > 0.
In this case, we have →<𝑖∪<𝑗 = →<𝑗. We have satisfied the diagram in Fig. 7 if we can

construct two reduction sequences 𝑏 →<𝑗 ⋯ →<𝑗 𝑑 and 𝑐 →<𝑗 ⋯ →<𝑗 𝑑.
By definition of 𝐶′, the distance from 𝑐 to the main road is 𝑗 − 1. By Lemma 6.14, there

exists a reduction sequence from 𝑐 to an element on the main road𝑚 using only steps smaller
than 𝑗.

Since 𝑖 = 0, 𝑏 is on the main road. Assume 𝑏 appears before 𝑚. Then we can build a
sequence 𝑏 →0 ⋯ →0 𝑚. Since 𝑗 > 0, this reduction sequence satisfies our requirement of
using only steps smaller than 𝑗. Then𝑚 is our desired common reduct. If𝑚 appears before
𝑏, we can extend the sequence from 𝑐 to𝑚 to 𝑏 similarly.

Case 3: 𝑖, 𝑗 > 0.
By Lemma 6.14, there exists a reduction sequence from 𝑏 to an element on the main road

𝑚1 using only steps smaller than 𝑖, and a reduction sequence from 𝑐 to an element on the
main road𝑚2 using only steps smaller than 𝑗.

Without loss of generality, assume𝑚1 ↠ 𝑚2. Then we can construct the sequence 𝑏 →<𝑖
⋯ →<𝑖 𝑚1 →<𝑖 ⋯ →<𝑖 𝑚2, where all steps between𝑚1 and𝑚2 have index 0.

We now have reduction sequences from 𝑏 and 𝑐 to𝑚2 satisfying the requirements of Fig. 7.
The case 𝑖 > 0, 𝑗 = 0 is ruled out by our assumption that 𝑖 ≤ 𝑗.

Lemma 6.16 𝐶 is DCR.

lemma dcr_component (hcp: cofinality_property A):
∀(C: Component A), DCR C.ars む= ㋽㍉㎕

Proof. By Lemmas 6.13 and 6.15,𝐶′ is a locally decreasing ARSwhich is reduction-equivalent
to𝐶.
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6.2.3 Unifying the components

We now have a way of constructing a locally decreasing ARS from a component 𝐶. Since 𝐶′

depends on the main road, and a component can have multiple different main roads, 𝐶′ is
not guaranteed to be unique. If, however, we pick a unique main road for every component,
we can split an ARS𝒜 into components𝐶, map them to a unique𝐶′, and reconstitute all of
these components into a locally decreasing ARS𝒜′, which is reduction-equivalent to𝒜.

Definition 6.17 Let 𝒜 = (𝛢,→) be an ARS which has the cofinality property. We
define a derived ARS𝒜′ = (𝛢,→ℕ) as follows:

𝑎 →𝑛 𝑏 if there is a component 𝐶 containing both 𝑎 and 𝑏, and we have 𝑎 →𝑛 𝑏 in
𝐶′, where𝐶′ is constructed as above, given a unique main road for𝐶.

def dcr_total_ars (hcp': cofinality_property_conv A): ARS α ℕ where
rel む= fun n a b ↦ ∃(C: Component A) (h: C.p a ∧ C.p b),
(SingleComponent.C' (MainRoad.seq C hcp') (MainRoad.is_cr C hcp'))
.rel n ⟨a, h.1⟩ ⟨b, h.2⟩

Note that, in our Lean definition, we are passing in the main road that is used by𝐶′. Main-
Road.seq picks a main road uniquely for𝐶, and there is only one component which contains
𝑎 and 𝑏, so this ARS satisfies the conditions above.

Lemma 6.18 𝒜′ is reduction-equivalent to𝒜.

def dcr_total.reduction_equivalent (hcp': cofinality_property_conv A):
A.union_rel = (dcr_total_ars A hcp').union_rel む= ㋽㍉㎕

Proof. Assume 𝑎 → 𝑏 in𝒜. Then 𝑎 and 𝑏 share a component 𝐶. By Lemma 6.13, we have
𝑎 →𝑛 𝑏 for some 𝑛 in𝐶′. Then, by definition of𝒜′, we have 𝑎 →𝑛 𝑏 in𝒜′.

Assume 𝑎 →𝑛 𝑏 in 𝒜′. Then there exists a component 𝐶 such that 𝑎 →𝑛 𝑏 in 𝐶′. By
Lemma 6.13, we have 𝑎 → 𝑏 in𝐶. Since𝐶 is a sub-ARS of𝒜, we have 𝑎 → 𝑏 in𝒜.

Lemma 6.19 𝒜′ is locally decreasing.

def dcr_total.is_ld (hcp': cofinality_property_conv A):
locally_decreasing (dcr_total_ars A hcp') む= ㋽㍉㎕

Proof. Let 𝑎, 𝑏, 𝑐 ∈ 𝛢 and assume 𝑎 →𝑖 𝑏 and 𝑎 →𝑗 𝑐. Without loss of generality, 𝑖 ≤ 𝑗. We
must show that 𝑏 and 𝑐 have a common reduct in𝒜′, with the path to the common reduct
satisfying the constraints in Fig. 7.

If 𝑎 →𝑖 𝑏 in𝒜′, then there is some component 𝐶′
1 which contains a step 𝑎 →𝑖 𝑏. Sim-

ilarly, there exists some component 𝐶′
2 which contains a step 𝑎 →𝑗 𝑐. Since both compo-

nents contain the element 𝑎, they must be the same component, call it𝐶′.

59

https://segfault.party/thesis-docs/find/?pattern=Thesis.DCRComplete.dcr_total_ars#doc
https://segfault.party/thesis-docs/find/?pattern=Thesis.DCRComplete.dcr_total.reduction_equivalent#doc
https://segfault.party/thesis-docs/find/?pattern=Thesis.DCRComplete.dcr_total.is_ld#doc


Then the existence of a common reduct 𝑑 follows from local decreasingness of the compo-
nent 𝐶′, Lemma 6.15. By definition, the reduction relation of𝒜′ is the union of the reduc-
tion relations in each component, so the paths to 𝑑 in this component also exist in𝒜′. Then
𝑑 is the common reduct we are looking for, and𝒜′ is locally decreasing.

Lemma 6.20 Every ARS with the cofinality property is DCR.

lemma dcr_of_cp (hcp: cofinality_property A):
DCR A む= ㋽㍉㎕

Proof. Let𝒜 be an ARS which has the cofinality property. Then𝒜′ is a locally-decreasing
ARS which is reduction-equivalent to𝒜, by Lemmas 6.18 and 6.19.

6.3 Completeness of DCR₂ for countable systems
In the previous section, we have seen how we can label edges in an ARS which has the cofi-
nality property using their minimal distance to a component’s main road, and that this yields
an ARS which is locally decreasing. Endrullis, Klop, and Overbeek show in [3] that with
limited modifications, this proof can be amended to use only two labels. We generally follow
the proof in [3, pp. 13–16], re-using the definitions of main road and rewrite distance from
Section 6.2.

In this section, we will assume the following variables are present:

variable
{α I: Type} {A: ARS α I}
{C: Component A}
(hcp: cofinality_property_conv A)
{N: ℕ∞} {f: ℕ → C.Subtype}
(main_road: reduction_seq C.ars.union_rel N f)
{hacyclic: main_road.acyclic}
(hcr: cofinal_reduction main_road)

Additionally, we will require there to be a well-order on α – the existence of such an order
is guaranteed by the well-ordering theorem (exists_wellOrder).

variable [LinearOrder α] [WellFoundedLT α]

Lemma 6.21 If an element is on the main road, its distance to the main road is zero.

def d0_of_on_main_road {a} (hmem: a ∈ main_road.elems):
(dX a main_road.elems (hcr a)).val = 0 む= ㋽㍉㎕

Proof. Trivial.
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Definition 6.22 Let𝛭 ∶ 𝑚0 → 𝑚1 → ⋯ be our main road. We say a step 𝑎 → 𝑏 is
minimizing if 𝑑𝛸(𝑎,𝛭) = 𝑑𝛸(𝑏,𝛭) + 1 and, for all 𝑏′ such that 𝑎 → 𝑏′ and 𝑑𝛸(𝑏,𝛭) =
𝑑𝛸(𝑏′,𝛭)we have 𝑏′ ≥ 𝑏.

def step_minimizing (a b) む=
(dX a main_road.elems (hcr a)).val = (dX b main_road.elems (hcr b)).val + 1 ∧
∀b', C.ars.union_rel a b' →
(dX b main_road.elems (hcr b)).val = (dX b' main_road.elems (hcr b')).val →
b' ≥ b

Definition 6.23 Let𝒜 = (𝛢,→) be an ARS, with 𝐶 a component of𝒜. We define an
ARS𝐶′ = (𝐶, {→0,→1}) as follows:

(i) 𝑎 →0 𝑏 if 𝑎 → 𝑏 and this step is on the main road or minimizing,
(ii) 𝑎 →1 𝑏 if 𝑎 → 𝑏 and this step is not on the main road and not minimizing.

def C': ARS C.Subtype (Fin 2) where
rel む= fun n a b ↦
match n with
| 0 㟆㢬 C.ars.union_rel a b ∧

(main_road.contains a b ∨ step_minimizing main_road hcr a b)
| 1 㟆㢬 C.ars.union_rel a b ∧

¬(main_road.contains a b ∨ step_minimizing main_road hcr a b)

The idea here is that we can get from an arbitrary element to the main road just by taking
steps labeled 0; these steps always get us closer to the main road.

Lemma 6.24 𝐶′ is reduction-equivalent to𝐶; that is,→ = →0 ∪ →1.

lemma C'.reduction_equivalent (b c):
C.ars.union_rel b c ↔ (C' main_road hcr).union_rel b c む= ㋽㍉㎕

Proof. Trivial from the definition of𝐶′.

Lemma 6.25 Any 𝑎, 𝑏 ∈ 𝛭 can be joined using only 0-steps.

lemma main_road_join (a b) (ha: a ∈ main_road.elems) (hb: b ∈ main_road.elems):
∃d, ((C' main_road hcr).rel 0)∗ a d ∧ ((C' main_road hcr).rel 0)∗ b d む= ㋽㍉㎕

Proof. Let 𝑎 = 𝑚𝑖 and 𝑏 = 𝑚𝑗. Without loss of generality, assume 𝑖 ≤ 𝑗, and so 𝑗 = 𝑖 + 𝑘 for
some 𝑘 > 0. Since𝑚𝑖 →0 𝑚𝑖+1, we have 𝑎 = 𝑚𝑖 ↠0 𝑚𝑖+𝑘 = 𝑚𝑗, and we can take a reflexive
step 𝑏 = 𝑚𝑗 ↠0 𝑚𝑗. Then 𝑏 is our desired 0-reduct.
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Lemma 6.26 For all 𝑎 ∈ 𝐶, there is at most one 𝑏 such that 𝑎 →0 𝑏.

lemma zero_step_unique {a b b'}:
(C' main_road hcr).rel 0 a b ∧ (C' main_road hcr).rel 0 a b' → b = b' む= ㋽㍉㎕

Proof. Let 𝑎 →0 𝑏 and 𝑎 →0 𝑏′ be two 0-steps. We distinguish the cases where 𝑎 is on the
main road.

If 𝑎 is on the main road, then both 𝑏 and 𝑏′ must be on the main road as well; if they
are not, they would have to be minimizing, but then by Lemma 6.21 and Definition 6.22,
𝑑𝛸(𝑎,𝛭) = 0 = 𝑑𝛸(𝑏,𝛭) + 1 = 𝑑𝛸(𝑏′,𝛭) + 1, which is obviously false. Since the main
road is acyclic, 𝑎 can appear only once, so we must have 𝑏 = 𝑏′.

Assume 𝑎 is not on the main road. Then both steps must be minimizing. By Defini-
tion 6.22, then, we must have 𝑏 ≥ 𝑏′ and 𝑏′ ≥ 𝑏, i.e. 𝑏 = 𝑏′.

Lemma 6.27 If 𝑎 ∉ 𝛭, there must be a step 𝑎 →0 𝑏 along which the distance to the main
road decreases by one.

lemma exists_distance_decreasing_step (a) (ha: a ∉ main_road.elems):
∃b, (C' main_road hcr).rel 0 a b ∧
(dX a main_road.elems (hcr a)).val =
(dX b main_road.elems (hcr b)).val + 1 む= ㋽㍉㎕

Proof. Since 𝑎 ∉ 𝛭, its distance to the main road must be positive. By definition of the
distance, then, there must be a length-𝑛+1 reduction sequence from 𝑎 to an element𝑚 ∈ 𝛭,
say 𝑎 = 𝑎0 → 𝑎1 → ⋯ → 𝑚.

Let 𝑏 = 𝑎1. There is a length-𝑛 reduction sequence from 𝑏 to 𝑚; now we must show
that it is minimal. Say there is a shorter reduction sequence from 𝑏 to an element 𝑚′ ∈ 𝛭.
Then the distance from 𝑎 to the main road must be shorter than 𝑛 + 1, which contradicts
our assumption.

Lemma 6.28 Every 𝑎 ∈ 𝐶 has a 0-reduct on the main road.

lemma main_road_reduction (a):
∃m ∈ main_road.elems, ((C' main_road hcr).rel 0)∗ a m む= ㋽㍉㎕

Proof. By induction on the distance of 𝑎 to the main road, along with Lemma 6.27.

Lemma 6.29 𝐶′ is locally decreasing.

lemma C'.locally_decreasing:
locally_decreasing (C' main_road hcr) む= ㋽㍉㎕
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Proof. Let 𝑎, 𝑏, 𝑐 ∈ 𝐶. Assume 𝑎 →𝑖 𝑏 and 𝑎 →𝑗 𝑐, where 𝑖, 𝑗 ∈ {0, 1}. We wish to show
that 𝑏 and 𝑐 have a common reduct 𝑑 as shown in Fig. 7.

If 𝑏 = 𝑐, then let 𝑑 = 𝑏 = 𝑐. We have 𝑏 ↠<𝑖 𝑏 →= 𝑏 ↠<𝑖∪<𝑗 𝑏 = 𝑑, because all of these
are reflexive steps, and the same holds for 𝑐.

If 𝑏 ≠ 𝑐, then we must have either 𝑖 = 1 or 𝑗 = 1, by Lemma 6.26. Then we have
↠<𝑖∪<𝑗 = ↠0. By Lemma 6.28, both 𝑏 and 𝑐 have reducts on the main road, call them 𝑚𝑏
and 𝑚𝑐. By Lemma 6.25, 𝑚𝑏 and 𝑚𝑐 can be joined to some reduct 𝑚∗ using only 0-steps.
Then we have 𝑏 ↠0 𝑚𝑏 ↠0 𝑚∗ and 𝑐 ↠0 𝑚𝑐 ↠0 𝑚∗ as required.

Lemma 6.30 𝐶 is DCR2.

lemma dcr₂_component (hcp: cofinality_property A):
∀(C: Component A), DCRn 2 C.ars む= ㋽㍉㎕

Proof. By Lemmas 6.24 and 6.29, 𝐶′ is a 2-label, locally decreasing ARS which is reduction-
equivalent to𝐶.

Now that we have shown that any individual component of our ARS is DCR2, we can
use the same technique as in the previous section to show that the entire ARS is DCR2.
Since the proof is exactly the same, we will not reproduce the steps here.
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7 Conclusion
In this thesis, we have formalized a large part of the foundations of abstract rewriting, culmi-
nating in a proof of completeness of DCR2 for countable systems. We have considered the
different possible ways of translating pen-and-paper definitions to Lean, in particular those
of abstract reduction systems and reduction sequences, and investigated what makes differ-
ent proofs of the same theorem more or less suitable to formalization by formalizing three
distinct proofs of Newman’s lemma.

A formalization of confluence by decreasing diagrams is conspicuously absent from this
work. In part this is because it has already been formalized in Isabelle in [16], and therefore
not considered novel enough to justify the work of including it here. That said, it should be
included in a more complete foundation.

The completeness proofs for DCR and DCR2 share many similarities, but are currently
largely independent in Lean. Further work can be done to integrate the proofs. Addition-
ally, it would be interesting to see if there is potential for these results to be integrated into
mathlib, so they can form the basis for more formalization in the area of (abstract) rewriting.
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